Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
This study takes debt financing as the entry point and explores the impact of state-owned capital participation in private enterprises from the perspectives of“unarticulated rules”and“articulated rules”.The study ...This study takes debt financing as the entry point and explores the impact of state-owned capital participation in private enterprises from the perspectives of“unarticulated rules”and“articulated rules”.The study finds that state-owned capital participation significantly reduces the debt financing costs of private enterprises and expands the scale of their debt financing.This conclusion remains valid after a series of endogeneity and robustness tests.Further analysis of the mechanism reveals that state-owned capital participation improves the debt financing of private enterprises through multiple channels:Enhancing their social reputation,mitigating the“statistical bias”they face,optimizing their information quality,and reducing the“shareholder-creditor”agency problems.This paper conceptualizes these benefits as the“complementary advantages of heterogeneous shareholders”.This not only constructs a theoretical framework for“reverse mixed-ownership reform”but also better narrates the Chinese story of“mixed-ownership reform”by adopting a more universally applicable theory of equity structure.Additionally,the paper supplements existing research on the macro-and meso-level relationship between the government and the market by exploring the government’s positive role at the micro-level.展开更多
The railways have significantly contributed to the economic development of the city.However,with the evolution of the city and adjustments in the industrial structure,the relocation and rerouting of major railway trun...The railways have significantly contributed to the economic development of the city.However,with the evolution of the city and adjustments in the industrial structure,the relocation and rerouting of major railway trunk lines have resulted in the abandonment of numerous urban railways.The abandoned railways,resulting from inadequate management,have transformed into sites for waste disposal and are particularly vulnerable to environmental issues,including land pollution,degradation of vegetation cover,and a decline in ecological diversity.Abandoned railways in urban centers significantly hinder transportation connectivity and adversely influence the aesthetic appeal of the city.The landscape transformation of these abandoned railways is of paramount importance in the context of urban renewal.These railway sites possess significant potential for stock utilization as specialized,underutilized spaces.Through the processes of re-planning,integration,and renewal,previously underutilized spaces can be revitalized and incorporated into the urban landscape in innovative ways.This approach not only enhances the availability of green leisure areas for residents but also contributes to the realization of sustainable urban development.展开更多
An emerging railway technology called smart railway promises to deliver higher transportation efficiency,enhanced comfort in services,and greater eco-friendliness.The smart railway is expected to integrate fifth-gener...An emerging railway technology called smart railway promises to deliver higher transportation efficiency,enhanced comfort in services,and greater eco-friendliness.The smart railway is expected to integrate fifth-generation mobile communication(5G),Artificial Intelligence(AI),and other technologies,which poses new problems in the construction,operation and maintenance of railway wireless networks.Wireless Digital Twins(DTs),which have recently emerged as a new paradigm for the design of wireless networks,can address these problems and enable the whole lifecycle management of railway wireless networks.However,there are still many scientific issues and challenges for railway-oriented wireless DT.Relevant key technologies to solve these problems are introduced and described,including characterization of materials'physical-EM properties,autonomous reconstruction of Three-dimensional(3D)environment model,AI-empowered environmental cognition,Ray-Tracing(RT),model-based and AIbased RT acceleration,and generation of multi-spectra sensing data.Moreover,this paper presents our research results for each key technology and describes the wireless network planning and optimization system based on highperformance RT developed by our laboratory.This paper outlines the framework for realizing the wireless DT of smart railways,providing the direction for future research.展开更多
Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in h...Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.展开更多
During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical propert...During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical properties of the ballast bed is of great significance for understanding the potential problems of sandy railways and proposing reasonable and adequate maintenance and repair strategies. Building upon existing research, this study proposes a new assessment indicator for sand content. Utilizing the discrete element method(DEM) and fully considering the complex interactions between ballast and sand particles, three-dimensional(3D) multi-scale analysis models of sandy ballast beds with different wind-blown sand contents are established and validated through field experiments. The effects of varying wind-blown sand content on the microscopic contact distribution and macroscopic mechanical behavior(such as resistance and support stiffness) of ballast beds are carefully analyzed. The results show that with the increase in sand content, the average contact force and coordination number between ballast particles gradually decrease, and the disparity in contact forces between different layers of the ballast bed diminishes. The longitudinal and lateral resistance of the ballast bed initially decreases and then increases, with a critical point at 10% sand content. At 15% sand content, the lateral resistance is mainly shared by the ballast shoulder. The longitudinal resistance sharing ratio is always the largest on the sleeper side, followed by that at the sleeper bottom, and the smallest on the ballast shoulder. When the sand content exceeds 10%, the contribution of sand particles to stiffness significantly increases, leading to an accelerated growth rate of the overall support stiffness of the ballast bed, which is highly detrimental to the long-term service performance of the ballast bed. In conclusion, it is recommended that maintenance and repair operations should be promptly conducted when the sand content of the ballast bed reaches or exceeds 10%.展开更多
Under China’s socialist system,state-owned enterprises are key forces driving the economic trajectory and providing strong momentum.These enterprises not only bear the crucial responsibility of advancing the process ...Under China’s socialist system,state-owned enterprises are key forces driving the economic trajectory and providing strong momentum.These enterprises not only bear the crucial responsibility of advancing the process of national modernization but also serve as the core of the national economic lifeline through their irreplaceable status and function amidst changing times.In the new era,with the advent of the technological revolution and the wave of globalization,state-owned enterprises face unprecedented opportunities and challenges.As a significant aspect of state-owned enterprise reform,the mixed ownership reform is not only a transformation in the structure of enterprise ownership but also a reflection of China’s broader,comprehensive reform efforts.By deeply advancing this reform,it will help optimize the allocation of state-owned assets and significantly boost technological and management innovation within state-owned enterprises,ensuring their competitiveness in the intense market environment.Therefore,this paper will conduct an in-depth analysis of the mixed ownership reform of state-owned enterprises from the perspective of Marxist political economy.展开更多
As an important pillar of national economic development,state-owned enterprises,their operational efficiency,and risk management ability are directly related to the stability and security of the national economy.As an...As an important pillar of national economic development,state-owned enterprises,their operational efficiency,and risk management ability are directly related to the stability and security of the national economy.As an important part of enterprise management,internal control management plays an irreplaceable role.Especially in the current domestic and international economic situation is complex and changeable,market competition is increasingly fierce environment,to strengthen the internal control management of state-owned enterprises and risk prevention measures is particularly important.This paper starts with the importance of internal control management and risk prevention for state-owned enterprises,and analyzes the problems and strategies in the internal control management and risk prevention of state-owned enterprises,in order to build a more comprehensive and efficient risk management system for state-owned enterprises to adapt to the ever-changing market environment and realize sustainable development.展开更多
The internet of things(IoT)has been widely considered to be integrated with high-speed railways to improve safety and service.It is important to achieve reliable communication in IoT for railways(IoT-R)under high mobi...The internet of things(IoT)has been widely considered to be integrated with high-speed railways to improve safety and service.It is important to achieve reliable communication in IoT for railways(IoT-R)under high mobility scenarios and strict energy constraints.Orthogonal time frequency space(OTFS)modulation is a two-dimensional modulation technique that has the potential to overcome the challenges in high Doppler environments.In addition,OTFS can have lower peak-to-average power ratio(PAPR)compared to orthogonal frequency division multiplexing,which is especially important for the application of IoT-R.Therefore,OTFS modulation for IoT-R is investigated in this paper.In order to decrease PAPR of OTFS and promote the application of OTFS modulation in IoT-R,the peak windowing technique is used in this paper.This technique can reduce the PAPR of OTFS by reducing the peak power and does not require multiple iterations.The impacts of different window functions,window sizes and clipping levels on PAPR and bit error rate of OTFS are simulated and discussed.The simulation results show that the peak windowing technique can efficiently reduce the PAPR of OTFS for IoT-R.展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
For a long time,it has been argued that the theories and practices devoted to urban planning and management should conform to the fundamental role of planning policies in the production of urban space,but not merely t...For a long time,it has been argued that the theories and practices devoted to urban planning and management should conform to the fundamental role of planning policies in the production of urban space,but not merely the spatial distribution of the produced services.Towards this wider connotation,this study introduces the notion of Railwayscape,grounded on the theory of‘The Production of Space’,to examine the role of railway station districts as catalysts of urban development through the social production of urban space.The present research sets out to establish the notion of Railwayscape and apply it in a railway heritage,i.e.,the Darjeeling Himalayan Railway(DHR)and its point of inception,Siliguri City,India.Accordingly,a criteria-based evaluation of four railway station districts(New Jalpaiguri,Siliguri Town,Siliguri Junction,and Sukna)in Siliguri and its surroundings was performed.The information regarding the selected four railway station districts is obtained through field observation and key informant consultation,supplemented by published literature and remote sensing data.This evaluation is succeeded by the strengths,weaknesses,opportunities and threats(SWOT)analysis accentuating the potential strengths,weaknesses,opportunities and threats associated with the selected four railway station districts and their prospects to become the potential Railwayscape.The results of this research show that there is no railway station district in Siliguri that can fully meet the demands of the locals and tourists,therefore,relfecting a lack of awareness of the historical values of these districts.The results also indicate that there are significant differences in the relative potentials of railway station districts to become the Railwayscape in urban environment.The outcomes of this research,therefore,are expected to encourage policy-making insitutions and practitioners to realise the‘place value’of some railway station districts and their potentials to yield better economic,social and structural virtue for a wide range of actors.展开更多
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H...High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies.展开更多
Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed ...Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.展开更多
This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative r...This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative risk management approaches.This article proposes response strategies from four key aspects:establishing a proactive risk management culture,building a foundation in technology and data,conducting big data-driven risk analysis,and implementing predictive analysis and real-time monitoring.State-owned enterprises can foster a proactive risk management culture by cultivating employee risk awareness,demonstrating leadership,and establishing transparency and open communication.Additionally,data integration and analysis,leveraging the latest technology,are crucial factors that can help companies better identify risks and opportunities.展开更多
In the evolution of modern railway thought,it includes not only the discussion of railway planning,sovereignty,debt,and construction,but also the discussion of spiritual guiding ideology such as“Tao,body and utility...In the evolution of modern railway thought,it includes not only the discussion of railway planning,sovereignty,debt,and construction,but also the discussion of spiritual guiding ideology such as“Tao,body and utility”and“material and spirit”.From the perspective of the relationship between road and equipment,the development of modern railway thought in China has experienced three stages.During the Westernization Movement,Li Hongzhang and other people expounded the benefits brought by railway construction from the angle of“utility”,and believed that there was still a unity of“Tao and style”.After the Sino-Japanese Naval Battle,with the emergence of the theory of railway sovereignty and the theory of dividing China,Kang Youwei and others questioned the thought of Westernization school.The unified Tao body was divided into two parts:China and the West.After the May Fourth Movement,railway,as a product of western material civilization,was compared with Eastern spiritual civilization by Liang Shuming,Li Dazhao,and others.The conflict between material and spirit made the Western“Tao style”evolve into the Europe-American way of pursuing“scientific spirit”and the Soviet-Russian way of exploring the ideas of revolution and transformation.The railway has thus become an important carrier of the“scientific spirit”and socialism.展开更多
Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/method...Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/methodology/approach–This paper provides a comprehensive overview of the definition,connotations,characteristics and key technologies of digital twin technology.It also conducts a thorough analysis of the current state of digital twin applications,with a particular focus on the overall requirements for intelligent operation and maintenance of high-speed railway infrastructure.Using the Jinan Yellow River Bridge on the Beijing–Shanghai high-speed railway as a case study,the paper details the construction process of the twin system from the perspectives of system architecture,theoretical definition,model construction and platform design.Findings–Digital twin technology can play an important role in the whole life cycle management,fault prediction and condition monitoring in the field of high-speed rail operation and maintenance.Digital twin technology is of great significance to improve the intelligent level of high-speed railway operation and management.Originality/value–This paper systematically summarizes the main components of digital twin railway.The general framework of the digital twin bridge is given,and its application in the field of intelligent operation and maintenance is prospected.展开更多
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect...Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets.展开更多
Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses upli...Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways.展开更多
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper...Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.展开更多
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金supported by the National Natural Science Foundation of China,“State-owned Capital Participation and Financial Behavior of Private Enterprises:A Study from the Perspective of‘Balance’and‘Complementarity’of Multiple Major Shareholders”(Grant No.72202230).
文摘This study takes debt financing as the entry point and explores the impact of state-owned capital participation in private enterprises from the perspectives of“unarticulated rules”and“articulated rules”.The study finds that state-owned capital participation significantly reduces the debt financing costs of private enterprises and expands the scale of their debt financing.This conclusion remains valid after a series of endogeneity and robustness tests.Further analysis of the mechanism reveals that state-owned capital participation improves the debt financing of private enterprises through multiple channels:Enhancing their social reputation,mitigating the“statistical bias”they face,optimizing their information quality,and reducing the“shareholder-creditor”agency problems.This paper conceptualizes these benefits as the“complementary advantages of heterogeneous shareholders”.This not only constructs a theoretical framework for“reverse mixed-ownership reform”but also better narrates the Chinese story of“mixed-ownership reform”by adopting a more universally applicable theory of equity structure.Additionally,the paper supplements existing research on the macro-and meso-level relationship between the government and the market by exploring the government’s positive role at the micro-level.
基金Sponsored by Basic Ability Enhancement Program for Young and Middle-aged Teachers in Colleges and Universities in Guangxi(2024KY0683).
文摘The railways have significantly contributed to the economic development of the city.However,with the evolution of the city and adjustments in the industrial structure,the relocation and rerouting of major railway trunk lines have resulted in the abandonment of numerous urban railways.The abandoned railways,resulting from inadequate management,have transformed into sites for waste disposal and are particularly vulnerable to environmental issues,including land pollution,degradation of vegetation cover,and a decline in ecological diversity.Abandoned railways in urban centers significantly hinder transportation connectivity and adversely influence the aesthetic appeal of the city.The landscape transformation of these abandoned railways is of paramount importance in the context of urban renewal.These railway sites possess significant potential for stock utilization as specialized,underutilized spaces.Through the processes of re-planning,integration,and renewal,previously underutilized spaces can be revitalized and incorporated into the urban landscape in innovative ways.This approach not only enhances the availability of green leisure areas for residents but also contributes to the realization of sustainable urban development.
基金supported by Beijing Natural Science Foundation(L212029,L221009)the National Natural Science Foundation of China(62271043,62371033)the Ministry of Education of China(8091B032123).
文摘An emerging railway technology called smart railway promises to deliver higher transportation efficiency,enhanced comfort in services,and greater eco-friendliness.The smart railway is expected to integrate fifth-generation mobile communication(5G),Artificial Intelligence(AI),and other technologies,which poses new problems in the construction,operation and maintenance of railway wireless networks.Wireless Digital Twins(DTs),which have recently emerged as a new paradigm for the design of wireless networks,can address these problems and enable the whole lifecycle management of railway wireless networks.However,there are still many scientific issues and challenges for railway-oriented wireless DT.Relevant key technologies to solve these problems are introduced and described,including characterization of materials'physical-EM properties,autonomous reconstruction of Three-dimensional(3D)environment model,AI-empowered environmental cognition,Ray-Tracing(RT),model-based and AIbased RT acceleration,and generation of multi-spectra sensing data.Moreover,this paper presents our research results for each key technology and describes the wireless network planning and optimization system based on highperformance RT developed by our laboratory.This paper outlines the framework for realizing the wireless DT of smart railways,providing the direction for future research.
基金the China Railway Wuhan Bureau Group Co.,Ltd.under the 2023 Science and Technology Research and Development Plan(Second Batch)(Wuhan Railway Science and Information Letter[2023]No.269),classification code 23GD07.
文摘Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.
基金supported by the National Natural Science Foundation of China (Grant No. 52372425)the Fundamental Research Funds for the Central Universities (Science and Technology Leading Talent Team Poject) Grant No. 2022JBXT010。
文摘During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical properties of the ballast bed is of great significance for understanding the potential problems of sandy railways and proposing reasonable and adequate maintenance and repair strategies. Building upon existing research, this study proposes a new assessment indicator for sand content. Utilizing the discrete element method(DEM) and fully considering the complex interactions between ballast and sand particles, three-dimensional(3D) multi-scale analysis models of sandy ballast beds with different wind-blown sand contents are established and validated through field experiments. The effects of varying wind-blown sand content on the microscopic contact distribution and macroscopic mechanical behavior(such as resistance and support stiffness) of ballast beds are carefully analyzed. The results show that with the increase in sand content, the average contact force and coordination number between ballast particles gradually decrease, and the disparity in contact forces between different layers of the ballast bed diminishes. The longitudinal and lateral resistance of the ballast bed initially decreases and then increases, with a critical point at 10% sand content. At 15% sand content, the lateral resistance is mainly shared by the ballast shoulder. The longitudinal resistance sharing ratio is always the largest on the sleeper side, followed by that at the sleeper bottom, and the smallest on the ballast shoulder. When the sand content exceeds 10%, the contribution of sand particles to stiffness significantly increases, leading to an accelerated growth rate of the overall support stiffness of the ballast bed, which is highly detrimental to the long-term service performance of the ballast bed. In conclusion, it is recommended that maintenance and repair operations should be promptly conducted when the sand content of the ballast bed reaches or exceeds 10%.
文摘Under China’s socialist system,state-owned enterprises are key forces driving the economic trajectory and providing strong momentum.These enterprises not only bear the crucial responsibility of advancing the process of national modernization but also serve as the core of the national economic lifeline through their irreplaceable status and function amidst changing times.In the new era,with the advent of the technological revolution and the wave of globalization,state-owned enterprises face unprecedented opportunities and challenges.As a significant aspect of state-owned enterprise reform,the mixed ownership reform is not only a transformation in the structure of enterprise ownership but also a reflection of China’s broader,comprehensive reform efforts.By deeply advancing this reform,it will help optimize the allocation of state-owned assets and significantly boost technological and management innovation within state-owned enterprises,ensuring their competitiveness in the intense market environment.Therefore,this paper will conduct an in-depth analysis of the mixed ownership reform of state-owned enterprises from the perspective of Marxist political economy.
文摘As an important pillar of national economic development,state-owned enterprises,their operational efficiency,and risk management ability are directly related to the stability and security of the national economy.As an important part of enterprise management,internal control management plays an irreplaceable role.Especially in the current domestic and international economic situation is complex and changeable,market competition is increasingly fierce environment,to strengthen the internal control management of state-owned enterprises and risk prevention measures is particularly important.This paper starts with the importance of internal control management and risk prevention for state-owned enterprises,and analyzes the problems and strategies in the internal control management and risk prevention of state-owned enterprises,in order to build a more comprehensive and efficient risk management system for state-owned enterprises to adapt to the ever-changing market environment and realize sustainable development.
基金supported by the National Key R&D Program of China under Grant 2022YFF0608103the National Natural Science Foundation of China under Grant 62001519 and 62271037。
文摘The internet of things(IoT)has been widely considered to be integrated with high-speed railways to improve safety and service.It is important to achieve reliable communication in IoT for railways(IoT-R)under high mobility scenarios and strict energy constraints.Orthogonal time frequency space(OTFS)modulation is a two-dimensional modulation technique that has the potential to overcome the challenges in high Doppler environments.In addition,OTFS can have lower peak-to-average power ratio(PAPR)compared to orthogonal frequency division multiplexing,which is especially important for the application of IoT-R.Therefore,OTFS modulation for IoT-R is investigated in this paper.In order to decrease PAPR of OTFS and promote the application of OTFS modulation in IoT-R,the peak windowing technique is used in this paper.This technique can reduce the PAPR of OTFS by reducing the peak power and does not require multiple iterations.The impacts of different window functions,window sizes and clipping levels on PAPR and bit error rate of OTFS are simulated and discussed.The simulation results show that the peak windowing technique can efficiently reduce the PAPR of OTFS for IoT-R.
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金University Grants Commission for the Junior Research Fellowship(Ref No.190510006296).
文摘For a long time,it has been argued that the theories and practices devoted to urban planning and management should conform to the fundamental role of planning policies in the production of urban space,but not merely the spatial distribution of the produced services.Towards this wider connotation,this study introduces the notion of Railwayscape,grounded on the theory of‘The Production of Space’,to examine the role of railway station districts as catalysts of urban development through the social production of urban space.The present research sets out to establish the notion of Railwayscape and apply it in a railway heritage,i.e.,the Darjeeling Himalayan Railway(DHR)and its point of inception,Siliguri City,India.Accordingly,a criteria-based evaluation of four railway station districts(New Jalpaiguri,Siliguri Town,Siliguri Junction,and Sukna)in Siliguri and its surroundings was performed.The information regarding the selected four railway station districts is obtained through field observation and key informant consultation,supplemented by published literature and remote sensing data.This evaluation is succeeded by the strengths,weaknesses,opportunities and threats(SWOT)analysis accentuating the potential strengths,weaknesses,opportunities and threats associated with the selected four railway station districts and their prospects to become the potential Railwayscape.The results of this research show that there is no railway station district in Siliguri that can fully meet the demands of the locals and tourists,therefore,relfecting a lack of awareness of the historical values of these districts.The results also indicate that there are significant differences in the relative potentials of railway station districts to become the Railwayscape in urban environment.The outcomes of this research,therefore,are expected to encourage policy-making insitutions and practitioners to realise the‘place value’of some railway station districts and their potentials to yield better economic,social and structural virtue for a wide range of actors.
基金This work was financially supported by the Portuguese Foundation for Science and Technology(FCT)through the PhD scholarship PD/BD/143007/2018The authors would like also to acknowledge the financial support of the projects IN2TRACK2-Research into enhanced track and switch and crossing system 2 and IN2TRACK3-Research into optimised and future railway infrastructure funded by European funds through the H2020(SHIFT2RAIL Innovation Programme)and of the Base Funding-UIDB/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC).
文摘High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies.
基金The research was supported by the National Natural Science Foundation of China(Grant Nos.41731288 and 41972299)the Science and Technology Research and Development Program of China Railway(Grant No.P2018G050)+1 种基金the Young Top-Notch Talent Project of National“Ten Thousands Talent Program”(Grant No.2019YJ300)the Major Scientific Research and Development Project of China Academy of Railway Sciences Corporation Limited(Grant No.2019YJ026).
文摘Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.
文摘This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative risk management approaches.This article proposes response strategies from four key aspects:establishing a proactive risk management culture,building a foundation in technology and data,conducting big data-driven risk analysis,and implementing predictive analysis and real-time monitoring.State-owned enterprises can foster a proactive risk management culture by cultivating employee risk awareness,demonstrating leadership,and establishing transparency and open communication.Additionally,data integration and analysis,leveraging the latest technology,are crucial factors that can help companies better identify risks and opportunities.
文摘In the evolution of modern railway thought,it includes not only the discussion of railway planning,sovereignty,debt,and construction,but also the discussion of spiritual guiding ideology such as“Tao,body and utility”and“material and spirit”.From the perspective of the relationship between road and equipment,the development of modern railway thought in China has experienced three stages.During the Westernization Movement,Li Hongzhang and other people expounded the benefits brought by railway construction from the angle of“utility”,and believed that there was still a unity of“Tao and style”.After the Sino-Japanese Naval Battle,with the emergence of the theory of railway sovereignty and the theory of dividing China,Kang Youwei and others questioned the thought of Westernization school.The unified Tao body was divided into two parts:China and the West.After the May Fourth Movement,railway,as a product of western material civilization,was compared with Eastern spiritual civilization by Liang Shuming,Li Dazhao,and others.The conflict between material and spirit made the Western“Tao style”evolve into the Europe-American way of pursuing“scientific spirit”and the Soviet-Russian way of exploring the ideas of revolution and transformation.The railway has thus become an important carrier of the“scientific spirit”and socialism.
基金funded by the China State Railway Group Co.,Ltd.Science and technology research and development program project(K2023G085).
文摘Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/methodology/approach–This paper provides a comprehensive overview of the definition,connotations,characteristics and key technologies of digital twin technology.It also conducts a thorough analysis of the current state of digital twin applications,with a particular focus on the overall requirements for intelligent operation and maintenance of high-speed railway infrastructure.Using the Jinan Yellow River Bridge on the Beijing–Shanghai high-speed railway as a case study,the paper details the construction process of the twin system from the perspectives of system architecture,theoretical definition,model construction and platform design.Findings–Digital twin technology can play an important role in the whole life cycle management,fault prediction and condition monitoring in the field of high-speed rail operation and maintenance.Digital twin technology is of great significance to improve the intelligent level of high-speed railway operation and management.Originality/value–This paper systematically summarizes the main components of digital twin railway.The general framework of the digital twin bridge is given,and its application in the field of intelligent operation and maintenance is prospected.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.51975347 and 51907117)in part by the Shanghai Science and Technology Program (Grant No.22010501600).
文摘Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets.
基金funded by the National Natural Science Foundation of China (No. 42172308, No.51779018)the Youth Innovation Promotion Association CAS (No. 2022331)the Science and Technology Research and Development Program of China State Railway Group Co., Ltd. (No. J2022G002)。
文摘Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways.
基金Projects(52022113,52278546)supported by the National Natural Science Foundation of ChinaProject(2020EEEVL0403)supported by the China Earthquake Administration。
文摘Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.