The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first ti...The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.展开更多
The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radia...The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations are obtained with the spin-coupled valence-bond approach. Electronic and vibrational state-selective differential cross sections are presented for projectile energies of 0.1, 1.0 and 10.0eV/u in the H2 orientation angles of 45° and 89°. The electronic and the vibrational state-selective differential cross sections show similar behaviours: they decrease as the scattering angle increases, and beyond a specific angle the oscillating structures appear. Moreover, it is also found that the vibrational state-selective differential cross sections are strongly orientation-dependent, which provides a possibility to determine the orientations of molecule H2 by identifying the vibrational state-selective differential scattering processes.展开更多
A study of single-electron capture(SEC) in 18-240 keV O^(6+)-Ne collisions has been conducted employing a combination of experimental and theoretical methodologies.Utilizing a reaction microscope,state-selective SEC c...A study of single-electron capture(SEC) in 18-240 keV O^(6+)-Ne collisions has been conducted employing a combination of experimental and theoretical methodologies.Utilizing a reaction microscope,state-selective SEC cross sections and projectile scattering angle distributions were obtained.The translational energy spectra for SEC reveal the prevailing capture into n=3 states of the projectile ion,with a minor contribution from n=4 states.Notably,as the projectile's energy increases,the relative contribution of SEC n=4 states increases while that of SEC n=3 states diminishes.Furthermore,we computed state-selective relative cross sections and angular differential cross sections employing the classical molecular Coulomb over-the-barrier model(MCBM) and the multichannel Landau-Zener(MCLZ) model.A discernible discrepancy between the state-selective cross sections from the two theoretical models is apparent for the considered impact energies.However,regarding the angular differential cross sections,an overall agreement was attained between the current experimental results and the theoretical results from the MCLZ model.展开更多
The rovibrational state-selectivity in photoassociation (PA) is investigated for the ground electronic state of OH radical. The calculated results show that population can be transferred from continuum state to the ...The rovibrational state-selectivity in photoassociation (PA) is investigated for the ground electronic state of OH radical. The calculated results show that population can be transferred from continuum state to the target states through three-, four-, and nine-photon transitions by choosing suitable pulse parameters and initial collision energy. To control population transfer to a lower rovibrational state, a shorter pulse frequency has to be chosen and the photon number transferred to target state should be increased. In PA process, some associated OH radicals can be dissociated via intermediate and background states, which decreases the nal population of the target state.展开更多
The laser-induced vibrational state-selectivity of product HF in photoassociation reaction H+F→HF is theoret- ically investigated by using the time-dependent quantum wave packet method. The population transfer proce...The laser-induced vibrational state-selectivity of product HF in photoassociation reaction H+F→HF is theoret- ically investigated by using the time-dependent quantum wave packet method. The population transfer process from the continuum state down to the bound vibrational states can be controlled by the driving laser. The effects of laser pulse parameters and the initial momentum of the two collision atoms on the vibrational population of the product HF are discussed in detail. Photodissociation accompanied with the photoassociation process is also described.展开更多
Nonadiabatic alignment by intense nonresonant the spatial direction of molecules: By solving the the degree of alignment of the molecules initially laser fields is a versatile technique to manipulate time-dependent S...Nonadiabatic alignment by intense nonresonant the spatial direction of molecules: By solving the the degree of alignment of the molecules initially laser fields is a versatile technique to manipulate time-dependent SchrSdinger equation numerically in different rotational state are calculated and the results show that the degree of alignment strongly depends on the initial rotational state. Thus, the present study indicates that, for obtaining a high degree of alignment for molecules, appropriate selection of molecular rotational states is necessary.展开更多
The principle and technique details of recoil ion momentum imaging are discussed and summarized. The recoil ion momentum spectroscopy built at the Institute of Modern Physics (Lanzhou) is presented. The first results ...The principle and technique details of recoil ion momentum imaging are discussed and summarized. The recoil ion momentum spectroscopy built at the Institute of Modern Physics (Lanzhou) is presented. The first results obtained at the setup are analyzed. For 30 keV He2+ on He collision, it is found that the capture of single electron occurs dominantly into the first excited states, and the related scattering angle results show that the ground state capture occurs at large impact parameters, while the capture into excited states occurs at small impact parameters. The results manifest the collision dynamics for the sub-femto-second process can be studied through the techniques uniquely. Finally, the future possibilities of applications of the recoil ion momentum spectroscopy in other fields are outlined.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402400)the National Natural Science Foundation of China(Grant Nos.11974358 and 11934004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)the Heavy Ion Research Facility in Lanzhou(HIRFL).
文摘The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.
基金supported by the National Natural Science Foundation of China (Grant Nos 10574018 and 10574020)
文摘The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations are obtained with the spin-coupled valence-bond approach. Electronic and vibrational state-selective differential cross sections are presented for projectile energies of 0.1, 1.0 and 10.0eV/u in the H2 orientation angles of 45° and 89°. The electronic and the vibrational state-selective differential cross sections show similar behaviours: they decrease as the scattering angle increases, and beyond a specific angle the oscillating structures appear. Moreover, it is also found that the vibrational state-selective differential cross sections are strongly orientation-dependent, which provides a possibility to determine the orientations of molecule H2 by identifying the vibrational state-selective differential scattering processes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934004,12064040,and 11974358)the National Key Research and Development Program of China(Grant No.2022YFA1602500)Strategic Key Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)。
文摘A study of single-electron capture(SEC) in 18-240 keV O^(6+)-Ne collisions has been conducted employing a combination of experimental and theoretical methodologies.Utilizing a reaction microscope,state-selective SEC cross sections and projectile scattering angle distributions were obtained.The translational energy spectra for SEC reveal the prevailing capture into n=3 states of the projectile ion,with a minor contribution from n=4 states.Notably,as the projectile's energy increases,the relative contribution of SEC n=4 states increases while that of SEC n=3 states diminishes.Furthermore,we computed state-selective relative cross sections and angular differential cross sections employing the classical molecular Coulomb over-the-barrier model(MCBM) and the multichannel Landau-Zener(MCLZ) model.A discernible discrepancy between the state-selective cross sections from the two theoretical models is apparent for the considered impact energies.However,regarding the angular differential cross sections,an overall agreement was attained between the current experimental results and the theoretical results from the MCLZ model.
基金This work is supported by the National Natural Science Foundation of China (No.11347012).
文摘The rovibrational state-selectivity in photoassociation (PA) is investigated for the ground electronic state of OH radical. The calculated results show that population can be transferred from continuum state to the target states through three-, four-, and nine-photon transitions by choosing suitable pulse parameters and initial collision energy. To control population transfer to a lower rovibrational state, a shorter pulse frequency has to be chosen and the photon number transferred to target state should be increased. In PA process, some associated OH radicals can be dissociated via intermediate and background states, which decreases the nal population of the target state.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10674022 and 20633070).
文摘The laser-induced vibrational state-selectivity of product HF in photoassociation reaction H+F→HF is theoret- ically investigated by using the time-dependent quantum wave packet method. The population transfer process from the continuum state down to the bound vibrational states can be controlled by the driving laser. The effects of laser pulse parameters and the initial momentum of the two collision atoms on the vibrational population of the product HF are discussed in detail. Photodissociation accompanied with the photoassociation process is also described.
基金The work was supported by the National Basic Research Program of China (973 Program) under grant No. 2013CB922200 and the National Natural Science Foundation of China under grant Nos. 11034003 and 11127403.
文摘Nonadiabatic alignment by intense nonresonant the spatial direction of molecules: By solving the the degree of alignment of the molecules initially laser fields is a versatile technique to manipulate time-dependent SchrSdinger equation numerically in different rotational state are calculated and the results show that the degree of alignment strongly depends on the initial rotational state. Thus, the present study indicates that, for obtaining a high degree of alignment for molecules, appropriate selection of molecular rotational states is necessary.
基金the National Natural Science Foundation of China (Grant No. 10434100)
文摘The principle and technique details of recoil ion momentum imaging are discussed and summarized. The recoil ion momentum spectroscopy built at the Institute of Modern Physics (Lanzhou) is presented. The first results obtained at the setup are analyzed. For 30 keV He2+ on He collision, it is found that the capture of single electron occurs dominantly into the first excited states, and the related scattering angle results show that the ground state capture occurs at large impact parameters, while the capture into excited states occurs at small impact parameters. The results manifest the collision dynamics for the sub-femto-second process can be studied through the techniques uniquely. Finally, the future possibilities of applications of the recoil ion momentum spectroscopy in other fields are outlined.