期刊文献+
共找到3,277篇文章
< 1 2 164 >
每页显示 20 50 100
Bayesian model averaging(BMA)for nuclear data evaluation
1
作者 E.Alhassan D.Rochman +1 位作者 G.Schnabel A.J.Koning 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期193-218,共26页
To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s... To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation. 展开更多
关键词 Bayesian model averaging(BMA) Nuclear data Nuclear reaction models model parameters TALYS code system Covariances
下载PDF
Improving the accuracy of precipitation estimates in a typical inland arid area of China using a dynamic Bayesian model averaging approach
2
作者 XU Wenjie DING Jianli +2 位作者 BAO Qingling WANG Jinjie XU Kun 《Journal of Arid Land》 SCIE CSCD 2024年第3期331-354,共24页
Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating a... Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions. 展开更多
关键词 precipitation estimates satellite-based and reanalysis precipitation dynamic Bayesian model averaging streamflow simulation Ebinur Lake Basin XINJIANG
下载PDF
Cross Validation Based Model Averaging for Varying-Coefficient Models with Response Missing at Random
3
作者 Huixin Li Xiuli Wang 《Journal of Applied Mathematics and Physics》 2024年第3期764-777,共14页
In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity condi... In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity conditions, it is proved that the proposed method is asymptotically optimal in the sense of achieving the minimum squared error. 展开更多
关键词 Response Missing at Random model averaging Asymptotic Optimality B-Spline Approximation
下载PDF
The Empirical Analysis on the Dynamic Effect of Rural-urban Migration on the Consumption Growth of Residents in China——Based on Varying Parameter State-space Model 被引量:1
4
作者 邹小芳 《Agricultural Science & Technology》 CAS 2016年第2期471-475,共5页
The research constructed varying parameter state-space model and per- formed estimation on dynamic relationship between urban-rural migration and aggre- gate consumption expenditure on basis of dual economic structure... The research constructed varying parameter state-space model and per- formed estimation on dynamic relationship between urban-rural migration and aggre- gate consumption expenditure on basis of dual economic structure. The results showed that urban consumption growth made the most contribution to aggregate consumption growth, followed by urban-rural migration caused consumption. The role of rural consumption growth kept stable, but consumption caused by population growth was decreasing. Therefore, China consumption growth mainly relies on urban consumption expenditure and urban-rural migration. 展开更多
关键词 Rural-urban migration Household consumption expenditure URBANIZATION state-space model
下载PDF
Recursive State-space Model Identification of Non-uniformly Sampled Systems Using Singular Value Decomposition 被引量:2
5
作者 王宏伟 刘涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1268-1273,共6页
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co... In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method. 展开更多
关键词 Non-uniformly sampling system state-space model IDENTIFICATION SINGULAR value decomposition RECURSIVE algorithm
下载PDF
Response of Growing Season Gross Primary Production to El Nino in Different Phases of the Pacific Decadal Oscillation over Eastern China Based on Bayesian Model Averaging 被引量:4
6
作者 Yueyue LI Li DAN +5 位作者 Jing PENG Junbang WANG Fuqiang YANG Dongdong GAO Xiujing YANG Qiang YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第9期1580-1595,共16页
Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the ... Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the Multi-scale Terrestrial Model Intercomparison Project using Bayesian model averaging(BMA).The spatial anomalies of detrended BMA GPP during the growing seasons of typical El Nino years indicated that GPP response to El Nino varies with Pacific Decadal Oscillation(PDO) phases: when the PDO was in the cool phase,it was likely that GPP was greater in northern China(32°–38°N,111°–122°E) and less in the Yangtze River valley(28°–32°N,111°–122°E);in contrast,when PDO was in the warm phase,the GPP anomalies were usually reversed in these two regions.The consistent spatiotemporal pattern and high partial correlation revealed that rainfall dominated this phenomenon.The previously published findings on how El Nino during different phases of PDO affecting rainfall in eastern China make the statistical relationship between GPP and El Nino in this study theoretically credible.This paper not only introduces an effective way to use BMA in grids that have mixed plant function types,but also makes it possible to evaluate the carbon cycle in eastern China based on the prediction of El Nino and PDO. 展开更多
关键词 East China Bayesian model averaging Gross primary production El Nino Pacific Decadal Oscillation Monsoon rainfall
下载PDF
Improving microwave brightness temperature predictions based on Bayesian model averaging ensemble approach 被引量:1
7
作者 Binghao JIA Zhenghui XIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第11期1501-1516,共16页
The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simu... The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64. 展开更多
关键词 Bayesian model averaging (BMA) microwave brightness temperature com-munity microwave emission model (CMEM) community land model version 4.5 (CLM4.5)
下载PDF
An Improved Time Domain Approach for Analysis of Floating Bridges Based on Dynamic Finite Element Method and State-Space Model 被引量:1
8
作者 XIANG Sheng CHENG Bin +1 位作者 ZHANG Feng-yu TANG Miao 《China Ocean Engineering》 SCIE EI CSCD 2022年第5期682-696,共15页
The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the ... The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the complicated fluid-solid coupling effects of wind and wave.In this research,a novel time domain approach combining dynamic finite element method and state-space model(SSM)is established for the refined analysis of floating bridges.The dynamic coupled effects induced by wave excitation load,radiation load and buffeting load are carefully simulated.High-precision fitted SSMs for pontoons are established to enhance the calculation efficiency of hydrodynamic radiation forces in time domain.The dispersion relation is also introduced in the analysis model to appropriately consider the phase differences of wave loads on pontoons.The proposed approach is then employed to simulate the dynamic responses of a scaled floating bridge model which has been tested under real wind and wave loads in laboratory.The numerical results are found to agree well with the test data regarding the structural responses of floating bridge under the considered environmental conditions.The proposed time domain approach is considered to be accurate and effective in simulating the structural behaviors of floating bridge under typical environmental conditions. 展开更多
关键词 floating bridge time domain analysis dynamic analysis state-space model environmental load
下载PDF
Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging 被引量:3
9
作者 YANG Jing FANG Gonghuan +1 位作者 CHEN Yaning Philippe DE-MAEYER 《Journal of Arid Land》 SCIE CSCD 2017年第4期622-634,共13页
Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan ... Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan and northern Kunlun Mountains(TKM) based on the general circulation model(GCM) simulation ensemble from the coupled model intercomparison project phase 5(CMIP5) under the representative concentration pathway(RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging(BMA) technique. Results show that(1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables;(2) at the end of the 21^(st) century(2070–2099) under RCP8.5, compared to the control period(1976–2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%;(3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976–2005 to 0.42 of 2070–2099 under RCP8.5; and(4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease. 展开更多
关键词 climate change GCM ensemble Bayesian model averaging Tianshan and northern Kunlun Mountains
下载PDF
Improving the simulation of terrestrial water storage anomalies over China using a Bayesian model averaging ensemble approach 被引量:1
10
作者 LIU Jian-Guo JIA Bing-Hao +1 位作者 XIE Zheng-Hui SHI Chun-Xiang 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第4期322-329,共8页
The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model ph... The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data. 展开更多
关键词 Terrestrial water storage anomalies multi-forcing and multi-model ensemble simulation Bayesian model averaging spatiotemporal variation UNCERTAINTY
下载PDF
A Review on High-Dimensional Frequentist Model Averaging
11
作者 Peipei Fu Juming Pan 《Open Journal of Statistics》 2018年第3期513-518,共6页
Model averaging has attracted increasing attention in recent years for the analysis of high-dimensional data. By weighting several competing statistical models suitably, model averaging attempts to achieve stable and ... Model averaging has attracted increasing attention in recent years for the analysis of high-dimensional data. By weighting several competing statistical models suitably, model averaging attempts to achieve stable and improved prediction. To obtain a better understanding of the available model averaging methods, their properties and the relationships between them, this paper is devoted to make a review on some recent progresses in high-dimensional model averaging from the frequentist perspective. Some future research topics are also discussed. 展开更多
关键词 model averaging HIGH-DIMENSIONAL Regression modelS STABLE PREDICTION
下载PDF
Comparison between Different ESI Methods on Refractory Epilepsy Patients Shows a High Sensitivity for Bayesian Model Averaging
12
作者 Danilo Maziero Agustin Lage Castellanos +1 位作者 Carlos Ernesto Garrido Salmon Tonicarlo Rodrigues Velasco 《Journal of Biomedical Science and Engineering》 2014年第9期662-674,共13页
Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showin... Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showing encouraging results for mapping interictal epileptiform discharges (IED). However, ESI is underused in planning epilepsy surgery. This is basically due to the wide availability of methods for solving the electromagnetism inverse problem (e-IP) associated to few studies using EEG setups similar to those most commonly used in clinical setting. In this study, we applied six different methods of solving the e-IP based on IEDs of 20 focal epilepsy patients that presented abnormalities in their MRI. We compared the ESI maps obtained by each method with the location of the abnormality, calculating the Euclidian distances from the center of the lesion to the closest border of the method solution (CL-BM) and also to the solution’s maxima (CL-MM). We also applied a score system in order to allow us to evaluate the sensitivity of each method for temporal and extra temporal patients. In our patients, the Bayesian Model Averaging method had a sensitivity of 86% and the shortest CL-MM. This method also had more restricted solutions that were more representative of epileptogenic activities than those obtained by the other methods. 展开更多
关键词 EEG EPILEPSY Electrical SOURCE Imaging BAYESIAN model averaging
下载PDF
Application of the Moving Averaging Technique in Surplus Production Models
13
作者 WANG Yu LIU Qun 《Journal of Ocean University of China》 SCIE CAS 2014年第4期657-665,共9页
Surplus production models are the simplest analytical methods effective for fish stock assessment and fisheries management. In this paper, eight surplus production estimators(three estimation procedures) were tested o... Surplus production models are the simplest analytical methods effective for fish stock assessment and fisheries management. In this paper, eight surplus production estimators(three estimation procedures) were tested on Schaefer and Fox type simulated data in three simulated fisheries(declining, well-managed, and restoring fisheries) at two white noise levels. Monte Carlo simulation was conducted to verify the utility of moving averaging(MA), which was an important technique for reducing the effect of noise in data in these models. The relative estimation error(REE) of maximum sustainable yield(MSY) was used as an indicator for the analysis, and one-way ANOVA was applied to test the significance of the REE calculated at four levels of MA. Simulation results suggested that increasing the value of MA could significantly improve the performance of the surplus production model(low REE) in all cases when the white noise level was low(coefficient of variation(CV) = 0.02). However, when the white noise level increased(CV= 0.25), adding the value of MA could still significantly enhance the performance of most models. Our results indicated that the best model performance occurred frequently when MA was equal to 3; however, some exceptions were observed when MA was higher. 展开更多
关键词 moving averaging surplus production model Monte Carlo simulation
下载PDF
Model Averaging by Stacking
14
作者 Claudio Morana 《Open Journal of Statistics》 2015年第7期797-807,共11页
The paper introduces a new Frequentist model averaging estimation procedure, based on a stacked OLS estimator across models, implementable on cross-sectional, panel, as well as time series data. The proposed estimator... The paper introduces a new Frequentist model averaging estimation procedure, based on a stacked OLS estimator across models, implementable on cross-sectional, panel, as well as time series data. The proposed estimator shows the same optimal properties of the OLS estimator under the usual set of assumptions concerning the population regression model. Relatively to available alternative approaches, it has the advantage of performing model averaging exante in a single step, optimally selecting models’ weight according to the MSE metric, i.e. by minimizing the squared Euclidean distance between actual and predicted value vectors. Moreover, it is straightforward to implement, only requiring the estimation of a single OLS augmented regression. By exploiting exante a broader information set and benefiting of more degrees of freedom, the proposed approach yields more accurate and (relatively) more efficient estimation than available expost methods. 展开更多
关键词 model averaging model UNCERTAINTY
下载PDF
A Mixture-Based Bayesian Model Averaging Method
15
作者 Georges Nguefack-Tsague Walter Zucchini 《Open Journal of Statistics》 2016年第2期220-228,共9页
Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator ar... Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator are hard to derive. This paper proposes a mixture of priors and sampling distributions as a basic of a Bayes estimator. The frequentist properties of the new Bayes estimator are automatically derived from Bayesian decision theory. It is shown that if all competing models have the same parametric form, the new Bayes estimator reduces to BMA estimator. The method is applied to the daily exchange rate Euro to US Dollar. 展开更多
关键词 MIXTURE Bayesian model Selection Bayesian model averaging Bayesian Theory Frequentist Performance
下载PDF
Frequentist Model Averaging and Applications to Bernoulli Trials
16
作者 Georges Nguefack-Tsague Walter Zucchini Siméon Fotso 《Open Journal of Statistics》 2016年第3期545-553,共9页
In several instances of statistical practice, it is not uncommon to use the same data for both model selection and inference, without taking account of the variability induced by model selection step. This is usually ... In several instances of statistical practice, it is not uncommon to use the same data for both model selection and inference, without taking account of the variability induced by model selection step. This is usually referred to as post-model selection inference. The shortcomings of such practice are widely recognized, finding a general solution is extremely challenging. We propose a model averaging alternative consisting on taking into account model selection probability and the like-lihood in assigning the weights. The approach is applied to Bernoulli trials and outperforms Akaike weights model averaging and post-model selection estimators. 展开更多
关键词 model Selection Post-model Selection Estimator Frequentist model averaging Bernoulli Trials
下载PDF
Least Squares Matrix Algorithm for State-Space Modelling of Dynamic Systems
17
作者 Juuso T. Olkkonen Hannu Olkkonen 《Journal of Signal and Information Processing》 2011年第4期287-291,共5页
This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation.... This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation. The state transition matrix is updated without the use of any forgetting function. This yields a robust estimation of model parameters in the presence of noise. The computational complexity of the LSM algorithm is comparable to the speed of the conventional recursive least squares (RLS) algorithm. The knowledge of the state transition matrix enables feasible numerical operators such as interpolation, fractional differentiation and integration. The usefulness of the LSM algorithm was proved in the analysis of the neuroelectric signal waveforms. 展开更多
关键词 state-space modelLING DYNAMIC SYSTEM Analysis EEG
下载PDF
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
18
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
下载PDF
Average modeling of Single Stage Flyback PFC + Flyback DC/DC converter 被引量:1
19
作者 沈淼森 康婉莹 钱照明 《Journal of Zhejiang University Science》 CSCD 2002年第1期77-81,共5页
With the use of this novel average model for Single Stage Flyback PFC+Flyback DC/DC converter, voltage control mode, peak current control mode and average current control mode can be simulated easily by changing the m... With the use of this novel average model for Single Stage Flyback PFC+Flyback DC/DC converter, voltage control mode, peak current control mode and average current control mode can be simulated easily by changing the model's parameters. It can be used to do various analysis not only for small signal and static behavior but also for large signal and dynamic behavior of the converter. By using this average model the simulation speed can be improved by 2 orders of magnitude above that obtained by using the conventional switched model. It can be applied to optimize the trade\|off between high power factor, voltage stress, current stress and good output performance while designing this kind of single stage PFC converter. A 60W single stage power factor corrector was built to verify the proposed model. The modeling principle can be applied to other Single Stage PFC topologies. 展开更多
关键词 average model power factor correction single stage
下载PDF
A Generalized State Space Average Model for Parallel DC-to-DC Converters 被引量:1
20
作者 Hasan Alrajhi 《Computer Systems Science & Engineering》 SCIE EI 2022年第5期717-734,共18页
The high potentiality of integrating renewable energies,such as photovoltaic,into a modern electrical microgrid system,using DC-to-DC converters,raises some issues associated with controller loop design and system sta... The high potentiality of integrating renewable energies,such as photovoltaic,into a modern electrical microgrid system,using DC-to-DC converters,raises some issues associated with controller loop design and system stability.The generalized state space average model(GSSAM)concept was consequently introduced to design a DC-to-DC converter controller in order to evaluate DC-to-DC converter performance and to conduct stability studies.This paper presents a GSSAM for parallel DC-to-DC converters,namely:buck,boost,and buck-boost converters.The rationale of this study is that modern electrical systems,such as DC networks,hybrid microgrids,and electric ships,are formed by parallel DC-to-DC converters with separate DC input sources.Therefore,this paper proposes a GSSAM for any number of parallel DC-to-DC converters.The proposed GSSAM is validated and investigated in a time-domain simulation environment,namely a MATLAB/SIMULINK.The study compares the steady-state,transient,and oscillatory performance of the state-space average model with a fully detailed switching model. 展开更多
关键词 Parallel DC-to-DC converters generalized state space average model buck converters boost converters buck-boost converters
下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部