Quantum state-to-state dynamics of the N(4S) + H-2(X1+Σ) → NH(X3Σ) + H(2S) reaction is reported in an accurate novel potential energy surface constructed by Zhai et al.(2011 J. Chem. Phys. 135 104314). The time-dep...Quantum state-to-state dynamics of the N(4S) + H-2(X1+Σ) → NH(X3Σ) + H(2S) reaction is reported in an accurate novel potential energy surface constructed by Zhai et al.(2011 J. Chem. Phys. 135 104314). The time-dependent wave packet method, which is implemented on graphics processing units, is used to calculate the differential cross sections. The influences of the collision energy on the product state-resolved integral cross sections and total differential cross sections are calculated and discussed. It is found that the products NH are predominated by the backward scattering due to the small impact parameter collisions, with only minor components being forward and sideways scattered, and have an inverted rotational distribution and no inversion in vibrational distributions; both rebound and stripping mechanisms exist in the case of high collision energies.展开更多
The quantum state-to-state calculations of the D + ND→N + D_2 reaction are performed on a potential energy surface of 4 A'' state. The state-resolved integral and differential cross sections and product state...The quantum state-to-state calculations of the D + ND→N + D_2 reaction are performed on a potential energy surface of 4 A'' state. The state-resolved integral and differential cross sections and product state distributions are calculated and discussed. It is found that the rotational distribution, rather than the vibrational distribution, of the product has an obvious inversion. Due to the fact that it is a small-impact-parameter collision, its product D_2 is mainly dominated by rebound mechanism, which can lead to backward scattering at low collision energy. As the collision energy increases, the forward scattering and sideward scattering begin to appear. In addition, the backward collision is also found to happen at high collision energy, through which we can know that both the rebound mechanism and stripping mechanism exist at high collision energy.展开更多
Six-dimensional quantum dynamics calculations for the state-to-state scattering of H_(2)/D_(2) on the rigid Cu(100)surface have been carried out using a time-dependent wave packet approach,based on an accurate neural ...Six-dimensional quantum dynamics calculations for the state-to-state scattering of H_(2)/D_(2) on the rigid Cu(100)surface have been carried out using a time-dependent wave packet approach,based on an accurate neural network potential energy surface fit for thousands of density functional theory data computed with the opt PBE-vd W density functional.The present results are compared with previous theoretical and experimental ones regarding to the rovibrationally(in)elastic scattering of H_(2) and D_(2) from Cu(100).In particular,we test the validity of the site-averaging approximation in this system by which the six-dimensional(in)elastic scattering probabilities are compared with the weighted average of four-dimensional results over fifteen fixed sites.Specifically,the site-averaging model reproduces vibrationally elastic scattering probabilities quite well,though less well for vibrationally inelastic results at high energies.These results support the use of the site-averaging model to reduce computational costs in future investigations on the state-to-state scattering dynamics of heavy diatomic or polyatomic molecules from metal surfaces,where full-dimensional calculations are too expensive.展开更多
State-to-state time-dependent quantum dynamics calculations have been carried out to study H+DH'→HH'+D/HD+H'reactions on BKMP2 surface.The total integral cross sections of both reactions are in good agree...State-to-state time-dependent quantum dynamics calculations have been carried out to study H+DH'→HH'+D/HD+H'reactions on BKMP2 surface.The total integral cross sections of both reactions are in good agreement with earlier theoretical and experimental results,moreover the rotational state-resolved reaction cross sections of H+DH'→HH‘+D at collision energy Ec=0.5 eV are closer to the experimental values than the ones calculated by Chao et al[J.Chem.Phys.1178341(2002)],which proves the higher precision of the quantum calculation in this work.In addition,the state-to-state dynamics of H+DH'→HD'+H reaction channel have been discussed in detail,and the differences of the micro-mechanism of the two reaction channels have been revealed and analyzed clearly.展开更多
We present a state-to-state dynamical calculation on the reaction S++ H2→ SH+ +H based on an accurate X2 A″ potential surface. Some reaction properties, such as reaction probability, integral cross sections, product...We present a state-to-state dynamical calculation on the reaction S++ H2→ SH+ +H based on an accurate X2 A″ potential surface. Some reaction properties, such as reaction probability, integral cross sections, product distribution, etc.,are found to be those with characteristics of an indirect reaction. The oscillating structures appearing in reaction probability versus collision energy are considered to be the consequence of the deep potential well in the reaction. The comparison of the present total integral cross sections with the previous quasi-classical trajectory results shows that the quantum effect is more important at low collision energies. In addition, the quantum number inversion in the rotational distribution of the product is regarded as the result of the heavy–light–light mass combination, which is not effective for the vibrational excitation. For the collision energies considered, the product differential cross sections of the title reaction are mainly concentrated in the forward and backward regions, which suggests that there is a long-life intermediate complex in the reaction process.展开更多
The reactive collisions of nitrogen ion with hydrogen and its isotopic variations have great significance in the field of astrophysics.Herein,the state-to-state quantum time-dependent wave packet calculations of N^(+)...The reactive collisions of nitrogen ion with hydrogen and its isotopic variations have great significance in the field of astrophysics.Herein,the state-to-state quantum time-dependent wave packet calculations of N^(+)(3P)+HD→NH^(+)/ND^(+)+D/H reaction are carried out based on the recently developed potential energy surface[Phys.Chem.Chem.Phys.2122203(2019)].The integral cross sections(ICSs)and rate coefficients of both channels are precisely determined at the state-to-state level.The results of total ICSs and rate coefficients present a dramatic preference on the ND+product over the NH^(+)product,conforming to the long-lived complex-forming mechanism.Product state-resolved ICSs indicate that both the product molecules are difficult to excite to higher vibrational states,and the ND^(+)product has a hotter rotational state distribution.Moreover,the integral cross sections and rate coefficients are precisely determined at the state-to-state level and insights are provided about the differences between the two channels.The present results would provide an important reference for the further experimental studies at the finer level for this interstellar chemical reaction.The datasets presented in this paper,including the ICSs and rate coefficients of the two products for the title reaction,are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00034.展开更多
State-to-state time-dependent quantum dynamics calculations are carried out to study F(2P) + HO(2ЦП(→ O(3P) + HF(1∑+) reaction on 1^3A″ ground potential energy surface (PES). The vibrationally resolv...State-to-state time-dependent quantum dynamics calculations are carried out to study F(2P) + HO(2ЦП(→ O(3P) + HF(1∑+) reaction on 1^3A″ ground potential energy surface (PES). The vibrationally resolved reaction probabilities and the total integral cross section agree well with the previous results. Due to the heavy-light-heavy (HLH) system and the large exoergicity, the obvious vibrational inversion is found in a state-resolved integral cross section. The total differential cross section is found to be forward-backward scattering biased with strong oscillations at energy lower than a threshold of 0.10 eV, which is the indication of the indirect complex-forming mechanism. When the collision energy increases to greater than 0.10 eV, the angular distribution of the product becomes a strong forward scattering, and almost all the products are distributed at θt = 0°. This forward-peaked distribution can be attributed to the larger J partial waves and the property of the F atom itself, which make this reaction a direct abstraction process. The state-resolved differential cross sections are basically forward-backward symmetric for v′ = 0, 1, and 2 at a collision energy of 0.07 eV; for a collision energy of 0.30 eV, it changes from backward/sideward scattering to forward peaked as v′ increasing from 0 to 3. These results indicate that the contribution of differential cross sections with more highly vibrational excited states to the total differential cross sections is principal, which further verifies the vibrational inversion in the products.展开更多
We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
We present a quantum dynamics study on the isotope effects of hydro-gen transfer isomerization in the formic acid dimer,and this is achieved by multidimensional dy-namics calculations with an efficient quantum mechani...We present a quantum dynamics study on the isotope effects of hydro-gen transfer isomerization in the formic acid dimer,and this is achieved by multidimensional dy-namics calculations with an efficient quantum mechanical theoretical scheme developed by our group,on a full-dimensional neural network ab initio potential energy surface.The ground-state and fundamental tun-neling splittings for four deuterium isotopologues of formic acid dimer are considered,and the calculated results are in very good general agreement with the avail-able experimental measurements.Strong isotope effects are revealed,the mode-specific funda-mental excitation effects on the tunneling rate are evidently influenced by the deuterium sub-stitution of H atom with the substitution on the OH bond being more effective than on the CH bond.Our studies are helpful for acquiring a better understanding of isotope effects in the double-hydrogen transfer processes.展开更多
From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and...From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and to their group velocity dω/dk. When we include special relativity expressed in simplest units, we find that, for particulate matter, the square of rest mass , i.e., angular frequency squared minus wave vector squared. This equation separates into a conservative part and a uniform responsive part. A wave function is derived in manifold rank 4, and from it are derived uncertainties and internal motion. The function solves four anomalies in quantum physics: the point particle with prescribed uncertainties;spooky action at a distance;time dependence that is consistent with the uncertainties;and resonant reduction of the wave packet by localization during measurement. A comparison between contradictory mathematical and physical theories leads to similar empirical conclusions because probability amplitudes express hidden variables. The comparison supplies orthodox postulates that are compared to physical principles that formalize the difference. The method is verified by dual harmonics found in quantized quasi-Bloch waves, where the quantum is physical;not axiomatic.展开更多
A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. ...A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. All the peaks in the TOF spectra can be clearly assigned to the ro-vibrational structures of the HF product. The forward scattering of the HF product at v′=3 has been observed. The small forward scattering of the HF product at v′=2 has also been detected. Detailed theoretical analysis is required in order to fully understand the dynamical origin of these forward scattering products at this high collision energy.展开更多
The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe...The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe technique. By selectively exciting the core and shell carrier, the dynamics are studied in detail. Carrier relaxation is found faster in the conduction band of the CdS shell (about 130 fs) than that in the conduction band of the CdSe core (about 400 fs). From the experiments it is distinctly demonstrated the existence of the defect states in the interface between the CdSe core and the CdS shell, indicating that ultrafast spectroscopy might be a suitable tool in studying interface and surface morphology properties in nanosystems.展开更多
The ultrafast carrier relaxation processes in CdTe quantum dots are investigated by femtosecond fluorescence upconversion spectroscopy.Photo-excited hole relaxing to the edge of the forbidden gap takes a maximal time ...The ultrafast carrier relaxation processes in CdTe quantum dots are investigated by femtosecond fluorescence upconversion spectroscopy.Photo-excited hole relaxing to the edge of the forbidden gap takes a maximal time of ~ 1.6 ps with exciting at 400 nm,depending on the state of the photo-excited hole.The shallow trapped states and deep trap states in the forbidden gap are confirmed for CdTe quantum dots.In addition,Auger relaxation of trapped carriers is observed to occur with a time constant of ~ 5 ps.A schematic model of photodynamics is established based on the results of the spectroscopy studies.Our work demonstrates that femtosecond fluorescence up-conversion spectroscopy is a suitable and effective tool in studying the transportation and conversion dynamics of photon energy in a nanosystem.展开更多
The wave function temporal evolution on the one-dimensional (ID) lattice is considered in the tight-binding approxi- mation. The lattice consists of N equal sites and one impurity site (donor). The donor differs f...The wave function temporal evolution on the one-dimensional (ID) lattice is considered in the tight-binding approxi- mation. The lattice consists of N equal sites and one impurity site (donor). The donor differs from other lattice sites by the on-site electron energy E and the intersite coupling C. The moving wave packet is formed from the wave function initially localized on the donor. The exact solution for the wave packet velocity and the shape is derived at different values E and C. The velocity has the maximal possible group velocity v = 2. The wave packet width grows with time -t1/3 and its amplitude decreases ,- t-1/3. The wave packet reflects multiply from the lattice ends. Analytical expressions for the wave packet front propagation and recurrence are in good agreement with numeric simulations.展开更多
Floquet dynamical quantum phase transitions(DQPTs),which are nonanalytic phenomena recuring periodically in time-periodic driven quantum many-body systems,have been widely studied in recent years.In this article,the F...Floquet dynamical quantum phase transitions(DQPTs),which are nonanalytic phenomena recuring periodically in time-periodic driven quantum many-body systems,have been widely studied in recent years.In this article,the Floquet DQPTs in transverse XY spin chains under the modulation ofδ-function periodic kickings are investigated.We analytically solve the system,and by considering the eigenstate as well as the ground state as the initial state of the Floquet dynamics,we study the corresponding multiple Floquet DQPTs emerged in the micromotion with different kicking moments.The rate function of return amplitude,the Pancharatnam geometric phase and the dynamical topological order parameter are calculated,which consistently verify the emergence of Floquet DQPTs in the system.展开更多
Time evolution dynamics of three non-coupled two-level atoms independently interacting with their reservoirs is solved exactly by considering a damping Lorentzian spectral density.For three atoms initially prepared in...Time evolution dynamics of three non-coupled two-level atoms independently interacting with their reservoirs is solved exactly by considering a damping Lorentzian spectral density.For three atoms initially prepared in Greenberger-Horne-Zeilinger-type state,quantum correlation dynamics in a Markovian reservoir is compared with that in a nonMarkovian reservoir.By increasing detuning quantity in the non-Markovian reservoir,three-atom correlation dynamics measured by negative eigenvalue presents a trapping phenomenon which provides long-time quantum entanglement.Then we compare the correlation dynamics of three atoms with that of two atoms,measured by quantum entanglement and quantum discord for an initial robuster-entangled type state.The result further confirms that quantum discord is indeed different from quantum entanglement in identifying quantum correlation of many bodies.展开更多
Quantum dynamics calculations for the title reaction H(2S) + S2(X3∑g) → SH(X2П) +S(3P) are performed byusing a globally accurate double many-body expansion potential energy surface [J. Phys. Chem. A 115 5...Quantum dynamics calculations for the title reaction H(2S) + S2(X3∑g) → SH(X2П) +S(3P) are performed byusing a globally accurate double many-body expansion potential energy surface [J. Phys. Chem. A 115 5274 (2011)]. The Chebyshev real wave packet propagation method is employed to obtain the dynamical information, such as reaction probability, initial state-specified integral cross section, and thermal rate constant. It is found not only that there is a reaction threshold near 0.7 eV in both reaction probabilities and integral cross section curves, but also that both the probability and cross section increase firstly and then decrease as the collision energy increases. The existence of the resonance structure in both the probability and cross section curves is ascribed to the deep potential well. The calculation of the rate constant reveals that the reaction occurring on the potential energy surface of the ground-state HS2 is slow to take place.展开更多
Quantum molecular dynamics (QMD) is used to investigate multifragmentation resulting from an expanding nuclear matter. Equation of state, the structure of nuclear matter and symmetric nu-clear matter is discussed. Als...Quantum molecular dynamics (QMD) is used to investigate multifragmentation resulting from an expanding nuclear matter. Equation of state, the structure of nuclear matter and symmetric nu-clear matter is discussed. Also, the dependence of the fragment mass distribution on the initial temperature (Tinit) and the radial flow velocity (h) is studied. When h is large, the distribution shows exponential shape, whereas for small h, it obeys the exponentially falling distribution with mass number. The cluster formation in an expanding system is found to be different from the one in a thermally equilibrated system. The used Hamiltonian has a classical kinetic energy term and an effective potential term composed of four parts.展开更多
We introduce a new scalable cavity quantum electrodynamics platform which can be used for quantum computing. This system is composed of coupled photonic crystal (PC) cavities which their modes lie on a Dirac cone in t...We introduce a new scalable cavity quantum electrodynamics platform which can be used for quantum computing. This system is composed of coupled photonic crystal (PC) cavities which their modes lie on a Dirac cone in the whole super crystal band structure. Quantum information is stored in quantum dots that are positioned inside the cavities. We show if there is just one quantum dot in the system, energy as photon is exchanged between the quantum dot and the Dirac modes sinusoidally. Meanwhile the quantum dot becomes entangled with Dirac modes. If we insert more quantum dots into the system, they also become entangled with each other.展开更多
Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that ...Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11074151)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2014AM022)
文摘Quantum state-to-state dynamics of the N(4S) + H-2(X1+Σ) → NH(X3Σ) + H(2S) reaction is reported in an accurate novel potential energy surface constructed by Zhai et al.(2011 J. Chem. Phys. 135 104314). The time-dependent wave packet method, which is implemented on graphics processing units, is used to calculate the differential cross sections. The influences of the collision energy on the product state-resolved integral cross sections and total differential cross sections are calculated and discussed. It is found that the products NH are predominated by the backward scattering due to the small impact parameter collisions, with only minor components being forward and sideways scattered, and have an inverted rotational distribution and no inversion in vibrational distributions; both rebound and stripping mechanisms exist in the case of high collision energies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674198 and 11504206)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2016AP14)the Taishan Scholar Project of Shandong Province,China
文摘The quantum state-to-state calculations of the D + ND→N + D_2 reaction are performed on a potential energy surface of 4 A'' state. The state-resolved integral and differential cross sections and product state distributions are calculated and discussed. It is found that the rotational distribution, rather than the vibrational distribution, of the product has an obvious inversion. Due to the fact that it is a small-impact-parameter collision, its product D_2 is mainly dominated by rebound mechanism, which can lead to backward scattering at low collision energy. As the collision energy increases, the forward scattering and sideward scattering begin to appear. In addition, the backward collision is also found to happen at high collision energy, through which we can know that both the rebound mechanism and stripping mechanism exist at high collision energy.
基金supported by the National Natural Science Foundation of China(No.22073089 and No.22033007)。
文摘Six-dimensional quantum dynamics calculations for the state-to-state scattering of H_(2)/D_(2) on the rigid Cu(100)surface have been carried out using a time-dependent wave packet approach,based on an accurate neural network potential energy surface fit for thousands of density functional theory data computed with the opt PBE-vd W density functional.The present results are compared with previous theoretical and experimental ones regarding to the rovibrationally(in)elastic scattering of H_(2) and D_(2) from Cu(100).In particular,we test the validity of the site-averaging approximation in this system by which the six-dimensional(in)elastic scattering probabilities are compared with the weighted average of four-dimensional results over fifteen fixed sites.Specifically,the site-averaging model reproduces vibrationally elastic scattering probabilities quite well,though less well for vibrationally inelastic results at high energies.These results support the use of the site-averaging model to reduce computational costs in future investigations on the state-to-state scattering dynamics of heavy diatomic or polyatomic molecules from metal surfaces,where full-dimensional calculations are too expensive.
基金the National Natural Science Foundation of China(Grant Nos.11504206 and 12004216)the Ph.D.Research Start-up Fund of Shandong Jiaotong University(Grant No.BS2020025)the Shandong Natural Science Foundation,China(Grant Nos.ZR2020MF102 and ZR2020QA064)。
文摘State-to-state time-dependent quantum dynamics calculations have been carried out to study H+DH'→HH'+D/HD+H'reactions on BKMP2 surface.The total integral cross sections of both reactions are in good agreement with earlier theoretical and experimental results,moreover the rotational state-resolved reaction cross sections of H+DH'→HH‘+D at collision energy Ec=0.5 eV are closer to the experimental values than the ones calculated by Chao et al[J.Chem.Phys.1178341(2002)],which proves the higher precision of the quantum calculation in this work.In addition,the state-to-state dynamics of H+DH'→HD'+H reaction channel have been discussed in detail,and the differences of the micro-mechanism of the two reaction channels have been revealed and analyzed clearly.
基金National Natural Science Foundation of China(Grant No.11674198)the Taishan Scholar Project of Shandong Province,China(Grant No.ts201511025)the Science Fund from the Shandong Provincial Laboratory of Biophysics.
文摘We present a state-to-state dynamical calculation on the reaction S++ H2→ SH+ +H based on an accurate X2 A″ potential surface. Some reaction properties, such as reaction probability, integral cross sections, product distribution, etc.,are found to be those with characteristics of an indirect reaction. The oscillating structures appearing in reaction probability versus collision energy are considered to be the consequence of the deep potential well in the reaction. The comparison of the present total integral cross sections with the previous quasi-classical trajectory results shows that the quantum effect is more important at low collision energies. In addition, the quantum number inversion in the rotational distribution of the product is regarded as the result of the heavy–light–light mass combination, which is not effective for the vibrational excitation. For the collision energies considered, the product differential cross sections of the title reaction are mainly concentrated in the forward and backward regions, which suggests that there is a long-life intermediate complex in the reaction process.
基金Project supported by the National Natural Science Foundation of China(Grant No.11774043).
文摘The reactive collisions of nitrogen ion with hydrogen and its isotopic variations have great significance in the field of astrophysics.Herein,the state-to-state quantum time-dependent wave packet calculations of N^(+)(3P)+HD→NH^(+)/ND^(+)+D/H reaction are carried out based on the recently developed potential energy surface[Phys.Chem.Chem.Phys.2122203(2019)].The integral cross sections(ICSs)and rate coefficients of both channels are precisely determined at the state-to-state level.The results of total ICSs and rate coefficients present a dramatic preference on the ND+product over the NH^(+)product,conforming to the long-lived complex-forming mechanism.Product state-resolved ICSs indicate that both the product molecules are difficult to excite to higher vibrational states,and the ND^(+)product has a hotter rotational state distribution.Moreover,the integral cross sections and rate coefficients are precisely determined at the state-to-state level and insights are provided about the differences between the two channels.The present results would provide an important reference for the further experimental studies at the finer level for this interstellar chemical reaction.The datasets presented in this paper,including the ICSs and rate coefficients of the two products for the title reaction,are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00034.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504206 and 11404049)the China Postdoctoral Science Foundation(CPSF)(Grant No.2014M561259)the Ph.D.Research Start-up Fund of Shandong Jiaotong University
文摘State-to-state time-dependent quantum dynamics calculations are carried out to study F(2P) + HO(2ЦП(→ O(3P) + HF(1∑+) reaction on 1^3A″ ground potential energy surface (PES). The vibrationally resolved reaction probabilities and the total integral cross section agree well with the previous results. Due to the heavy-light-heavy (HLH) system and the large exoergicity, the obvious vibrational inversion is found in a state-resolved integral cross section. The total differential cross section is found to be forward-backward scattering biased with strong oscillations at energy lower than a threshold of 0.10 eV, which is the indication of the indirect complex-forming mechanism. When the collision energy increases to greater than 0.10 eV, the angular distribution of the product becomes a strong forward scattering, and almost all the products are distributed at θt = 0°. This forward-peaked distribution can be attributed to the larger J partial waves and the property of the F atom itself, which make this reaction a direct abstraction process. The state-resolved differential cross sections are basically forward-backward symmetric for v′ = 0, 1, and 2 at a collision energy of 0.07 eV; for a collision energy of 0.30 eV, it changes from backward/sideward scattering to forward peaked as v′ increasing from 0 to 3. These results indicate that the contribution of differential cross sections with more highly vibrational excited states to the total differential cross sections is principal, which further verifies the vibrational inversion in the products.
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.
基金supported by the National Natural Sci-ence Foundation of China(No.21973098 and No.22133003)the Beijing National Laboratory for Molecular SciencesJianwei Cao acknowledges the Youth Innovation Promotion Association CAS(No.2018045).
文摘We present a quantum dynamics study on the isotope effects of hydro-gen transfer isomerization in the formic acid dimer,and this is achieved by multidimensional dy-namics calculations with an efficient quantum mechanical theoretical scheme developed by our group,on a full-dimensional neural network ab initio potential energy surface.The ground-state and fundamental tun-neling splittings for four deuterium isotopologues of formic acid dimer are considered,and the calculated results are in very good general agreement with the avail-able experimental measurements.Strong isotope effects are revealed,the mode-specific funda-mental excitation effects on the tunneling rate are evidently influenced by the deuterium sub-stitution of H atom with the substitution on the OH bond being more effective than on the CH bond.Our studies are helpful for acquiring a better understanding of isotope effects in the double-hydrogen transfer processes.
文摘From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and to their group velocity dω/dk. When we include special relativity expressed in simplest units, we find that, for particulate matter, the square of rest mass , i.e., angular frequency squared minus wave vector squared. This equation separates into a conservative part and a uniform responsive part. A wave function is derived in manifold rank 4, and from it are derived uncertainties and internal motion. The function solves four anomalies in quantum physics: the point particle with prescribed uncertainties;spooky action at a distance;time dependence that is consistent with the uncertainties;and resonant reduction of the wave packet by localization during measurement. A comparison between contradictory mathematical and physical theories leads to similar empirical conclusions because probability amplitudes express hidden variables. The comparison supplies orthodox postulates that are compared to physical principles that formalize the difference. The method is verified by dual harmonics found in quantized quasi-Bloch waves, where the quantum is physical;not axiomatic.
基金This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology and the National Natural Science Foundation of China.ACKN0WLEDGMENT This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology and the National Natural Science Foundation of China.
文摘A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. All the peaks in the TOF spectra can be clearly assigned to the ro-vibrational structures of the HF product. The forward scattering of the HF product at v′=3 has been observed. The small forward scattering of the HF product at v′=2 has also been detected. Detailed theoretical analysis is required in order to fully understand the dynamical origin of these forward scattering products at this high collision energy.
基金This work was supported by the National Natural Science Foundation of China (No.11074003) and the Key Program of Educational Commission of Anhui Province of China (No.KJ2010AI32). For the help of Prof. J. L. Zhao at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in sample preparation is greatly appreciated.
文摘The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe technique. By selectively exciting the core and shell carrier, the dynamics are studied in detail. Carrier relaxation is found faster in the conduction band of the CdS shell (about 130 fs) than that in the conduction band of the CdSe core (about 400 fs). From the experiments it is distinctly demonstrated the existence of the defect states in the interface between the CdSe core and the CdS shell, indicating that ultrafast spectroscopy might be a suitable tool in studying interface and surface morphology properties in nanosystems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074003 and 20973001)the Key Program of Educational Commission of Anhui Province of China (Grant No. KJ2010A132)
文摘The ultrafast carrier relaxation processes in CdTe quantum dots are investigated by femtosecond fluorescence upconversion spectroscopy.Photo-excited hole relaxing to the edge of the forbidden gap takes a maximal time of ~ 1.6 ps with exciting at 400 nm,depending on the state of the photo-excited hole.The shallow trapped states and deep trap states in the forbidden gap are confirmed for CdTe quantum dots.In addition,Auger relaxation of trapped carriers is observed to occur with a time constant of ~ 5 ps.A schematic model of photodynamics is established based on the results of the spectroscopy studies.Our work demonstrates that femtosecond fluorescence up-conversion spectroscopy is a suitable and effective tool in studying the transportation and conversion dynamics of photon energy in a nanosystem.
文摘The wave function temporal evolution on the one-dimensional (ID) lattice is considered in the tight-binding approxi- mation. The lattice consists of N equal sites and one impurity site (donor). The donor differs from other lattice sites by the on-site electron energy E and the intersite coupling C. The moving wave packet is formed from the wave function initially localized on the donor. The exact solution for the wave packet velocity and the shape is derived at different values E and C. The velocity has the maximal possible group velocity v = 2. The wave packet width grows with time -t1/3 and its amplitude decreases ,- t-1/3. The wave packet reflects multiply from the lattice ends. Analytical expressions for the wave packet front propagation and recurrence are in good agreement with numeric simulations.
基金supported by the National Natural Science Foundation of China(Grant No.11475037)the Fundamental Research Funds for the Central Universities(Grant No.DUT19LK38)。
文摘Floquet dynamical quantum phase transitions(DQPTs),which are nonanalytic phenomena recuring periodically in time-periodic driven quantum many-body systems,have been widely studied in recent years.In this article,the Floquet DQPTs in transverse XY spin chains under the modulation ofδ-function periodic kickings are investigated.We analytically solve the system,and by considering the eigenstate as well as the ground state as the initial state of the Floquet dynamics,we study the corresponding multiple Floquet DQPTs emerged in the micromotion with different kicking moments.The rate function of return amplitude,the Pancharatnam geometric phase and the dynamical topological order parameter are calculated,which consistently verify the emergence of Floquet DQPTs in the system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11104113 and 11264011)the Natural Science Foundation of Hunan Province,China (Grant Nos. 09JJ6011 and 11JJ6007)
文摘Time evolution dynamics of three non-coupled two-level atoms independently interacting with their reservoirs is solved exactly by considering a damping Lorentzian spectral density.For three atoms initially prepared in Greenberger-Horne-Zeilinger-type state,quantum correlation dynamics in a Markovian reservoir is compared with that in a nonMarkovian reservoir.By increasing detuning quantity in the non-Markovian reservoir,three-atom correlation dynamics measured by negative eigenvalue presents a trapping phenomenon which provides long-time quantum entanglement.Then we compare the correlation dynamics of three atoms with that of two atoms,measured by quantum entanglement and quantum discord for an initial robuster-entangled type state.The result further confirms that quantum discord is indeed different from quantum entanglement in identifying quantum correlation of many bodies.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074151 and 11304185)
文摘Quantum dynamics calculations for the title reaction H(2S) + S2(X3∑g) → SH(X2П) +S(3P) are performed byusing a globally accurate double many-body expansion potential energy surface [J. Phys. Chem. A 115 5274 (2011)]. The Chebyshev real wave packet propagation method is employed to obtain the dynamical information, such as reaction probability, initial state-specified integral cross section, and thermal rate constant. It is found not only that there is a reaction threshold near 0.7 eV in both reaction probabilities and integral cross section curves, but also that both the probability and cross section increase firstly and then decrease as the collision energy increases. The existence of the resonance structure in both the probability and cross section curves is ascribed to the deep potential well. The calculation of the rate constant reveals that the reaction occurring on the potential energy surface of the ground-state HS2 is slow to take place.
文摘Quantum molecular dynamics (QMD) is used to investigate multifragmentation resulting from an expanding nuclear matter. Equation of state, the structure of nuclear matter and symmetric nu-clear matter is discussed. Also, the dependence of the fragment mass distribution on the initial temperature (Tinit) and the radial flow velocity (h) is studied. When h is large, the distribution shows exponential shape, whereas for small h, it obeys the exponentially falling distribution with mass number. The cluster formation in an expanding system is found to be different from the one in a thermally equilibrated system. The used Hamiltonian has a classical kinetic energy term and an effective potential term composed of four parts.
文摘We introduce a new scalable cavity quantum electrodynamics platform which can be used for quantum computing. This system is composed of coupled photonic crystal (PC) cavities which their modes lie on a Dirac cone in the whole super crystal band structure. Quantum information is stored in quantum dots that are positioned inside the cavities. We show if there is just one quantum dot in the system, energy as photon is exchanged between the quantum dot and the Dirac modes sinusoidally. Meanwhile the quantum dot becomes entangled with Dirac modes. If we insert more quantum dots into the system, they also become entangled with each other.
基金Project supported by the NSAF(Grant No.U1930201)the National Natural Science Foundation of China(Grant Nos.12274331,91836101,and 91836302)+1 种基金the National Key R&D Program of China(Grant No.2018YFA0306504)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302100).
文摘Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.