期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Static and Dynamic Analysis of Lasing Action from Single and Coupled Photonic Crystal Nanocavity Lasers
1
作者 Peng-Chao Zhao Fan Qi +2 位作者 Ai-Yi Qi Yu-Fei Wang Wan-Hua Zheng 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第2期30-33,共4页
The single and coupled photonic crystal nanocavity lasers are fabricated in the InGaAsP material system and their static and dynamic features are compared. The coupled-cavity lasers show a larger lasing e^ciency and g... The single and coupled photonic crystal nanocavity lasers are fabricated in the InGaAsP material system and their static and dynamic features are compared. The coupled-cavity lasers show a larger lasing e^ciency and generate an output power higher than the single-cavity lasers, results that are consistent with the theoretical results obtained by rate equations. In dynamic regime, the single-cavity lasers produce pulses as short as 113 ps, while the coupled-cavity lasers show a significantly longer lasing duration. These results indicate that the photonic crystal laser is a promising candidate for the light source in high-speed photonic integrated circuit. 展开更多
关键词 static and dynamic analysis of Lasing Action from Single and Coupled Photonic Crystal Nanocavity Lasers
下载PDF
Impact of Earthquake Action on the Design and Sizing of Jointed Masonry Structures in South Kivu, DRC
2
作者 Edmond Dawak Fezeu Marcelline Blanche Manjia +3 位作者 Chérif Bishweka Biryondeke Patient Kubuya Binwa Élodie Rufine Zang Chrispin Pettang 《Open Journal of Civil Engineering》 2024年第1期127-153,共27页
This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in t... This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall. 展开更多
关键词 Jointed Masonry Weight-Bearing Structures Seismic Action Eurocode 7 and 8 static and dynamic analysis
下载PDF
Hybrid Malware Variant Detection Model with Extreme Gradient Boosting and Artificial Neural Network Classifiers
3
作者 Asma A.Alhashmi Abdulbasit A.Darem +5 位作者 Sultan M.Alanazi Abdullah M.Alashjaee Bader Aldughayfiq Fuad A.Ghaleb Shouki A.Ebad Majed A.Alanazi 《Computers, Materials & Continua》 SCIE EI 2023年第9期3483-3498,共16页
In an era marked by escalating cybersecurity threats,our study addresses the challenge of malware variant detection,a significant concern for amultitude of sectors including petroleum and mining organizations.This pap... In an era marked by escalating cybersecurity threats,our study addresses the challenge of malware variant detection,a significant concern for amultitude of sectors including petroleum and mining organizations.This paper presents an innovative Application Programmable Interface(API)-based hybrid model designed to enhance the detection performance of malware variants.This model integrates eXtreme Gradient Boosting(XGBoost)and an Artificial Neural Network(ANN)classifier,offering a potent response to the sophisticated evasion and obfuscation techniques frequently deployed by malware authors.The model’s design capitalizes on the benefits of both static and dynamic analysis to extract API-based features,providing a holistic and comprehensive view of malware behavior.From these features,we construct two XGBoost predictors,each of which contributes a valuable perspective on the malicious activities under scrutiny.The outputs of these predictors,interpreted as malicious scores,are then fed into an ANN-based classifier,which processes this data to derive a final decision.The strength of the proposed model lies in its capacity to leverage behavioral and signature-based features,and most importantly,in its ability to extract and analyze the hidden relations between these two types of features.The efficacy of our proposed APIbased hybrid model is evident in its performance metrics.It outperformed other models in our tests,achieving an impressive accuracy of 95%and an F-measure of 93%.This significantly improved the detection performance of malware variants,underscoring the value and potential of our approach in the challenging field of cybersecurity. 展开更多
关键词 API-based hybrid malware detection model static and dynamic analysis malware detection
下载PDF
An efficient improved Gradient Boosting for strain prediction in Near-Surface Mounted fiber-reinforced polymer strengthened reinforced concrete beam
4
作者 Abdelwahhab KHATIR Roberto CAPOZUCCA +3 位作者 Samir KHATIR Erica MAGAGNINI Brahim BENAISSA Thanh CUONG-LE 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第8期1148-1168,共21页
The Near-Surface Mounted(NSM)strengthening technique has emerged as a promising alternative to traditional strengthening methods in recent years.Over the past two decades,researchers have extensively studied its poten... The Near-Surface Mounted(NSM)strengthening technique has emerged as a promising alternative to traditional strengthening methods in recent years.Over the past two decades,researchers have extensively studied its potential,advantages,and applications,as well as related parameters,aiming at optimization of construction systems.However,there is still a need to explore further,both from a static perspective,which involves accounting for the nonconservation of the contact section resulting from the bond-slip effect between fiber-reinforced polymer(FRP)rods and resin and is typically neglected by existing analytical models,as well as from a dynamic standpoint,which involves studying the trends of vibration frequencies to understand the effects of various forms of damage and the efficiency of reinforcement.To address this gap in knowledge,this research involves static and dynamic tests on simply supported reinforced concrete(RC)beams using rods of NSM carbon fiber reinforced polymer(CFRP)and glass fiber reinforced polymer(GFRP).The main objective is to examine the effects of various strengthening methods.This research conducts bending tests with loading cycles until failure,and it helps to define the behavior of beam specimens under various damage degrees,including concrete cracking.Dynamic analysis by free vibration testing enables tracking of the effectiveness of the reinforcement at various damage levels at each stage of the loading process.In addition,application of Particle Swarm Optimization(PSO)and Genetic Algorithm(GA)is proposed to optimize Gradient Boosting(GB)training performance for concrete strain prediction in NSM-FRP RC.The GB using Particle Swarm Optimization(GBPSO)and GB using Genetic Algorithm(GBGA)systems were trained using an experimental data set,where the input data was a static applied load and the output data was the consequent strain.Hybrid models of GBPSO and GBGA have been shown to provide highly accurate results for predicting strain.These models combine the strengths of both optimization techniques to create a powerful and efficient predictive tool. 展开更多
关键词 NSM technique fiber-reinforced polymer rods static and dynamic analysis GB PSO GA finite element analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部