By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course...By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course of exploitation of resources in deep. One is under the conditions that the con-fining pressure is fixed and the axial pressure is changeable. The other is under the conditions that the confining pressure becomes and the axial pressure is fixed. It is found that samples break up evenly after impacting when axial static pressures are low, there is great disparity in size of fragments when axial static pressures are high, and the main bodies of samples after the tests under the combination of dy-namic and static loads frequently show the type of V or X. The samples are more close-grained at the elastic stage and impacts make many cracks be generated and developed, as makes samples more crackable. At the initial phase of damage stage, the static pressures make some cracks in the samples which are undeveloped and the impacts′ role is similar to that at the elastic stage. At the metaphase or anaphase of damage stage, these cracks in the samples develop adequately and the impacts mainly accelerate samples′ failure. The main bodies of samples show the type of V or X after impacting due to the confining pressures′ restraining samples′ lateral formation at the elastic stage or the initial phase of damage stage, the main bodies of samples have almost formed at the stage loading static pressures and the results after impacting usually are similar to those under the axial pressures tests.展开更多
It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution o...It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading.展开更多
Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting...Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting and boring.It is verified that these testing systems can be used to study the mechanical properties of rock material under coupled static and dynamic loading condition and give useful guidance for the deep mining and underground cavern excavation.Various tests to determine the rock strength,fragmentation behavior,and energy absorption were conducted using the updated testing systems.It is shown that under coupled static-dynamic loads,if the axial prestress is lower than its elastic limit,the rock strength is higher than the individual static or dynamic strength.At the same axial prestress,rock strength under coupled loads rises with the increasing strain rates.Under coupled static and dynamic loads,rock is observed to fail with tensile mode.While shear failure may exist if axial prestress is high enough.In addition,it is shown that the percentage of small particles increases with the increasing axial prestress and impact load based on the analysis of the particle-size distribution of fragments.It is also suggested that the energy absorption ratio of a specimen varies with coupled loads,and the maximum energy absorption ratio for a rock can be obtained with an appropriate combination of static and dynamic loads.展开更多
In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking ...In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking was established by the Winkler foundation beam theory, and the stress evolution law of surrounding rock with different dip angles of the seam during the mining process was analyzed by using FLAC3 D. The results show that: with the dip angle changing from 45° to 0°, the solid-coal side of gobside entry begins to form an L-shaped stress concentration zone at a dip angle of 30°, and the stress concentration degree goes to higher and higher levels. However, the stress concentration degree of the coalpillar side goes to lower and lower levels; the influence range and peak stress of the abutment at the lateral strata of adjacent gob increase with dip angle decreasing and reach a maximum value at a dip angle of 0°, but the tailgate is not affected; the abutment pressure superposition of two adjacent gobs leads to stress concentration further enhancing in both sides of gob-side entry. With the influence of strong mining disturbance, rock burst is easily induced by dynamic and static combined load in the advanced segment of gob-side entry. To achieve stability control similar to that in the roadway, the key control strategy is to reinforce surrounding rock and unload both sides. Accordingly, the large-diameter drilling and high-pressure water injection combined unloading and reinforced support cooperative control technology was proposed and applied in field test. The results of Electromagnetic Emission(EME) and field observation showed that unloading and surrounding rock control effect was obvious.展开更多
To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of over...To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of overlying strata was analyzed by Winkler elastic foundation beam theory.Furthermore,the influence law of panel width to suspended width and limit breaking span of key strata were also analyzed by thin plate theory.Through micro-seismic monitoring,theoretical analysis,numerical simulation and working resistance of support of field measurement,this study investigated the fracture characteristic of overlying strata and mechanism of rock burst in irregular working face.The results show that the fracture characteristic of overlying strata shows a spatial trapezoid structure,with the main roof being as an undersurface.The fracture form changes from vertical‘‘O-X"type to transverse‘‘O-X"type with the increase of trapezoidal height.From the narrow mining face to the wide mining face,the suspended width of key strata is greater than its limit breaking width,and a strong dynamic load is produced by the fracture of key strata.The numerical simulation and micro-seismic monitoring results show that the initial fracture position of key strata is close to tailgate 7447.Also there is a high static load caused by fault tectonic.The dynamic and static combined load induce rock burst.Accordingly,a cooperative control technology was proposed,which can weaken dynamic load by hard roof directional hydraulic fracture and enhance surrounding rock by supporting system.展开更多
This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
Experiments about working mechanism and mechanical characteristics of the DX model pile foundation under lateral dynamic and static loading were conducted by using a model system of the dynamic frozen soil-pile intera...Experiments about working mechanism and mechanical characteristics of the DX model pile foundation under lateral dynamic and static loading were conducted by using a model system of the dynamic frozen soil-pile interaction. The horizontal displacement-force relationship of the pile head and bending moment distribution along the body in frozen soils of different temperatures were discussed. According to test results, both the horizontal disp!acement-force relationship of the DX pile head and bending moment distribution of the DX pile body are smaller than that of equal-diameter piles under same lateral loads. The piles with different plate positions show different displacements and bending moments. This phenomenon is mainly related to the soil temperature and bearing plates locations. Thus, dynamic response analysis of the pile foundation should be taken into account.展开更多
In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge st...In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge structure safety,it is necessary to monitor the main girder deflection,stress,construction error and safety state during construction.Furthermore,to verify whether the bridge can meet the design requirements,the static and dynamic load tests are carried out after the completion of the bridge.The results of construction monitoring show that the stress state of the structure during construction is basically consistent with the theoretical calculation and design requirements,and both meet the design and specification requirements.The final measured stress state of the structure is within the allowable range of the cable-stayed bridge,and the stress state of the structure is normal and meets the specification requirements.The results of load tests show that the measured deflection values of the mid-span section of the main girder are less than the theoretical calculation values.The maximum deflection of the girder is−20.90 mm,which is less than−22.00 mm of the theoretical value,indicating that the girder has sufficient structural stiffness.The maximum impact coefficient under dynamic load test is 1.08,which is greater than 1.05 of theoretical value,indicating that the impact effect of heavy-duty truck on this type of bridge is larger.This study can provide important reference value for construction and maintenance of similar corrugated steel web cable-stayed bridges.展开更多
基金Supported by National Natural Science Foundation of China(No.10472134 and No.50490274)
文摘By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course of exploitation of resources in deep. One is under the conditions that the con-fining pressure is fixed and the axial pressure is changeable. The other is under the conditions that the confining pressure becomes and the axial pressure is fixed. It is found that samples break up evenly after impacting when axial static pressures are low, there is great disparity in size of fragments when axial static pressures are high, and the main bodies of samples after the tests under the combination of dy-namic and static loads frequently show the type of V or X. The samples are more close-grained at the elastic stage and impacts make many cracks be generated and developed, as makes samples more crackable. At the initial phase of damage stage, the static pressures make some cracks in the samples which are undeveloped and the impacts′ role is similar to that at the elastic stage. At the metaphase or anaphase of damage stage, these cracks in the samples develop adequately and the impacts mainly accelerate samples′ failure. The main bodies of samples show the type of V or X after impacting due to the confining pressures′ restraining samples′ lateral formation at the elastic stage or the initial phase of damage stage, the main bodies of samples have almost formed at the stage loading static pressures and the results after impacting usually are similar to those under the axial pressures tests.
基金National Natural Science Foundation of China (Grant No.51804079)Fujian Natural Science Foundation (Grant No.2019J05039)
文摘It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading.
基金Supported by the National Natural Science Foundation of China (10872218,50934006,50534030)Research Foundation for the Doctoral Program of Higher Education of China (200805331143)
文摘Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting and boring.It is verified that these testing systems can be used to study the mechanical properties of rock material under coupled static and dynamic loading condition and give useful guidance for the deep mining and underground cavern excavation.Various tests to determine the rock strength,fragmentation behavior,and energy absorption were conducted using the updated testing systems.It is shown that under coupled static-dynamic loads,if the axial prestress is lower than its elastic limit,the rock strength is higher than the individual static or dynamic strength.At the same axial prestress,rock strength under coupled loads rises with the increasing strain rates.Under coupled static and dynamic loads,rock is observed to fail with tensile mode.While shear failure may exist if axial prestress is high enough.In addition,it is shown that the percentage of small particles increases with the increasing axial prestress and impact load based on the analysis of the particle-size distribution of fragments.It is also suggested that the energy absorption ratio of a specimen varies with coupled loads,and the maximum energy absorption ratio for a rock can be obtained with an appropriate combination of static and dynamic loads.
基金supported by the Key Project of National Natural Science Foundation of China (No.51634001)the National Natural Science Foundation of China (No.51404269 and 51674253)+1 种基金the State Key Research Development Program of China (No.2016YFC0801403)the Key Research Development Program of Jiangsu Province,China (No.BE2015040)
文摘In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking was established by the Winkler foundation beam theory, and the stress evolution law of surrounding rock with different dip angles of the seam during the mining process was analyzed by using FLAC3 D. The results show that: with the dip angle changing from 45° to 0°, the solid-coal side of gobside entry begins to form an L-shaped stress concentration zone at a dip angle of 30°, and the stress concentration degree goes to higher and higher levels. However, the stress concentration degree of the coalpillar side goes to lower and lower levels; the influence range and peak stress of the abutment at the lateral strata of adjacent gob increase with dip angle decreasing and reach a maximum value at a dip angle of 0°, but the tailgate is not affected; the abutment pressure superposition of two adjacent gobs leads to stress concentration further enhancing in both sides of gob-side entry. With the influence of strong mining disturbance, rock burst is easily induced by dynamic and static combined load in the advanced segment of gob-side entry. To achieve stability control similar to that in the roadway, the key control strategy is to reinforce surrounding rock and unload both sides. Accordingly, the large-diameter drilling and high-pressure water injection combined unloading and reinforced support cooperative control technology was proposed and applied in field test. The results of Electromagnetic Emission(EME) and field observation showed that unloading and surrounding rock control effect was obvious.
基金supported by the Key Project of National Natural Science Foundation of China (No. 51634001)the National Natural Science Foundation of China (Nos. 51404269 and 51674253)+1 种基金the State Key Research Development Program of China (No. 2016YFC0801403)the Key Research Development Program of Jiangsu Province, China (No. BE2015040)
文摘To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of overlying strata was analyzed by Winkler elastic foundation beam theory.Furthermore,the influence law of panel width to suspended width and limit breaking span of key strata were also analyzed by thin plate theory.Through micro-seismic monitoring,theoretical analysis,numerical simulation and working resistance of support of field measurement,this study investigated the fracture characteristic of overlying strata and mechanism of rock burst in irregular working face.The results show that the fracture characteristic of overlying strata shows a spatial trapezoid structure,with the main roof being as an undersurface.The fracture form changes from vertical‘‘O-X"type to transverse‘‘O-X"type with the increase of trapezoidal height.From the narrow mining face to the wide mining face,the suspended width of key strata is greater than its limit breaking width,and a strong dynamic load is produced by the fracture of key strata.The numerical simulation and micro-seismic monitoring results show that the initial fracture position of key strata is close to tailgate 7447.Also there is a high static load caused by fault tectonic.The dynamic and static combined load induce rock burst.Accordingly,a cooperative control technology was proposed,which can weaken dynamic load by hard roof directional hydraulic fracture and enhance surrounding rock by supporting system.
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金supported by the Fundamental Research Funds for the Central Universities of China (Grant No.2011JBM269)the State Key Development Programof Basic Research of China (973 Project No.2012CB026104)the College Students Technology Innovation Experiment project in Beijing Jiaotong University
文摘Experiments about working mechanism and mechanical characteristics of the DX model pile foundation under lateral dynamic and static loading were conducted by using a model system of the dynamic frozen soil-pile interaction. The horizontal displacement-force relationship of the pile head and bending moment distribution along the body in frozen soils of different temperatures were discussed. According to test results, both the horizontal disp!acement-force relationship of the DX pile head and bending moment distribution of the DX pile body are smaller than that of equal-diameter piles under same lateral loads. The piles with different plate positions show different displacements and bending moments. This phenomenon is mainly related to the soil temperature and bearing plates locations. Thus, dynamic response analysis of the pile foundation should be taken into account.
基金We would like to express our deep gratitude to the 2021 Liaoning Province Doctoral Research Start-Up Fund Project(2021-BS-168)for financial support.
文摘In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge structure safety,it is necessary to monitor the main girder deflection,stress,construction error and safety state during construction.Furthermore,to verify whether the bridge can meet the design requirements,the static and dynamic load tests are carried out after the completion of the bridge.The results of construction monitoring show that the stress state of the structure during construction is basically consistent with the theoretical calculation and design requirements,and both meet the design and specification requirements.The final measured stress state of the structure is within the allowable range of the cable-stayed bridge,and the stress state of the structure is normal and meets the specification requirements.The results of load tests show that the measured deflection values of the mid-span section of the main girder are less than the theoretical calculation values.The maximum deflection of the girder is−20.90 mm,which is less than−22.00 mm of the theoretical value,indicating that the girder has sufficient structural stiffness.The maximum impact coefficient under dynamic load test is 1.08,which is greater than 1.05 of theoretical value,indicating that the impact effect of heavy-duty truck on this type of bridge is larger.This study can provide important reference value for construction and maintenance of similar corrugated steel web cable-stayed bridges.