通过控制粉煤灰、矿渣和钢纤维的掺量,配制了不同抗压强度的钢纤维地质聚合物混凝土试件,进行轴心抗压试验与电镜扫描(field scanning electron microscope,FSEM)微观结构分析,研究了钢纤维掺量对不同混凝土基准强度试件的应力-应变曲...通过控制粉煤灰、矿渣和钢纤维的掺量,配制了不同抗压强度的钢纤维地质聚合物混凝土试件,进行轴心抗压试验与电镜扫描(field scanning electron microscope,FSEM)微观结构分析,研究了钢纤维掺量对不同混凝土基准强度试件的应力-应变曲线、能量耗散等力学特征的影响。结果表明:钢纤维提升了普通地质聚合物混凝土的轴心抗压强度、弹性模量、峰值应变、能量耗散与延性等力学性能;FSEM试验观测到钢纤维的桥接作用及硅酸钙水合物的粘结作用改善了试件内部材料之间的粘结性能,使试件的力学性能得到了较好的提升;建立的轴心受压应力-应变本构模型与试验值整体吻合较好,为钢纤维地质聚合物的工程应用提供了一定的理论基础。展开更多
文摘通过控制粉煤灰、矿渣和钢纤维的掺量,配制了不同抗压强度的钢纤维地质聚合物混凝土试件,进行轴心抗压试验与电镜扫描(field scanning electron microscope,FSEM)微观结构分析,研究了钢纤维掺量对不同混凝土基准强度试件的应力-应变曲线、能量耗散等力学特征的影响。结果表明:钢纤维提升了普通地质聚合物混凝土的轴心抗压强度、弹性模量、峰值应变、能量耗散与延性等力学性能;FSEM试验观测到钢纤维的桥接作用及硅酸钙水合物的粘结作用改善了试件内部材料之间的粘结性能,使试件的力学性能得到了较好的提升;建立的轴心受压应力-应变本构模型与试验值整体吻合较好,为钢纤维地质聚合物的工程应用提供了一定的理论基础。