Residual stresses and deformation of static bonding multi-layer Pyrex7740 glass and aluminum have important effects on performances of bonding parts. The stress and strain finite element analysis of anodic bonding can...Residual stresses and deformation of static bonding multi-layer Pyrex7740 glass and aluminum have important effects on performances of bonding parts. The stress and strain finite element analysis of anodic bonding can optimize the structure and process design, reduce the workload of the experiments, shorten the production cycle, improve the bonding quality, and reduce the process costs. In this paper, residual stresses and deformation in the static bonding two-layer (glass/aluminum), three-layer (glass/aluminum/ glass),five-layer(glass/aluminum/glass/aluminum/glass)and seven-layer (glass/aluminum/glass/aluminum/glass/ aluminum/glass) samples have been analyzed using nonlinear finite element simulation software MARC. The simulation results show that the shear stress distribution and deformation distribution in different multi-layer glass and aluminum samples are similar. The stress distribution along thickness at different typical positions in all multi-layer samples has characteristics of pulse pattern, which has pulse peak at the position of transition layers and then decreases abruptly to the minimum value at the positions of glass and aluminum. The maximum shear stress is located in the outside surface area in the transition layer between the top unconstrained glass layer and aluminum layer. The displacement distribution along thickness in all multi-layer samples increases gradually fi'om the constrained bottom glass layer to the top unconstrained glass layer with abrupt step increase in the aluminum layers, The maximum deformations occur in aluminum layers. It is found that the minimum deformation distortion and the minimum shear stress occur in the three-layer static bonding sample.展开更多
The principle of miniature isolated solid-state encapsulation technology of high-temperature pressure sensor and the structure of packaging are discussed, including static electricity bonding, stainless steel diaphrag...The principle of miniature isolated solid-state encapsulation technology of high-temperature pressure sensor and the structure of packaging are discussed, including static electricity bonding, stainless steel diaphragm selection and rippled design, laser welding, silicon oil infilling, isolation and other techniques used in sensor packaging, which can affect the performance of the sensor. By adopting stainless steel diaphragm and high-temperature silicon oil as isolation materials, not only the encapsulation of the sensor is as small as 15 mm in diameter and under 1 mA drive, its full range output is 72 mV and zero stability is 0.48% F.S/mon, but also the reliability of the sensor is improved and its application is widely broadened.展开更多
基金Supported by the National Natural Science Foundation of China(No.51275332)Shanxi Graduate Outstanding Innovative Projects(No.20123104)
文摘Residual stresses and deformation of static bonding multi-layer Pyrex7740 glass and aluminum have important effects on performances of bonding parts. The stress and strain finite element analysis of anodic bonding can optimize the structure and process design, reduce the workload of the experiments, shorten the production cycle, improve the bonding quality, and reduce the process costs. In this paper, residual stresses and deformation in the static bonding two-layer (glass/aluminum), three-layer (glass/aluminum/ glass),five-layer(glass/aluminum/glass/aluminum/glass)and seven-layer (glass/aluminum/glass/aluminum/glass/ aluminum/glass) samples have been analyzed using nonlinear finite element simulation software MARC. The simulation results show that the shear stress distribution and deformation distribution in different multi-layer glass and aluminum samples are similar. The stress distribution along thickness at different typical positions in all multi-layer samples has characteristics of pulse pattern, which has pulse peak at the position of transition layers and then decreases abruptly to the minimum value at the positions of glass and aluminum. The maximum shear stress is located in the outside surface area in the transition layer between the top unconstrained glass layer and aluminum layer. The displacement distribution along thickness in all multi-layer samples increases gradually fi'om the constrained bottom glass layer to the top unconstrained glass layer with abrupt step increase in the aluminum layers, The maximum deformations occur in aluminum layers. It is found that the minimum deformation distortion and the minimum shear stress occur in the three-layer static bonding sample.
文摘The principle of miniature isolated solid-state encapsulation technology of high-temperature pressure sensor and the structure of packaging are discussed, including static electricity bonding, stainless steel diaphragm selection and rippled design, laser welding, silicon oil infilling, isolation and other techniques used in sensor packaging, which can affect the performance of the sensor. By adopting stainless steel diaphragm and high-temperature silicon oil as isolation materials, not only the encapsulation of the sensor is as small as 15 mm in diameter and under 1 mA drive, its full range output is 72 mV and zero stability is 0.48% F.S/mon, but also the reliability of the sensor is improved and its application is widely broadened.