This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best the...This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best thermal compensating factor to the compound device that indicates the relationship between the thermal variation rate of current gain and device structure. This is important for the design of compound device to be optimized. Finally, the analytical model is found to be in good agreement with numerical simulation and experimental results. The test results demonstrate that thermal variation rate of current gain is below 10% in 25 ℃-85 ℃ and 20% in -55 ℃-25 ℃.展开更多
Methods for improving the high current performance of static induction transistor (SIT) are presented.Many important factors,such as "trans-conductance per unit channel width" θ, "gate efficiency" η, "sensiti...Methods for improving the high current performance of static induction transistor (SIT) are presented.Many important factors,such as "trans-conductance per unit channel width" θ, "gate efficiency" η, "sensitivity factor" D,and "intrinsic static gain" μ0,that may be used to describe different aspects of the electrical performance of an SIT are first defined.The dependences of electrical parameters on the structure and technological process of an SIT are revealed for the first time.The packaging technologies are so important for the improvement of high power performance of SITs that they must be paid attention.Testing techniques and circuits for measuring frequency and power parameters of SITs are designed and constructed.The influence of packaging processes in technological practice on the electrical performance of SITs is also discussed in depth.展开更多
文摘This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best thermal compensating factor to the compound device that indicates the relationship between the thermal variation rate of current gain and device structure. This is important for the design of compound device to be optimized. Finally, the analytical model is found to be in good agreement with numerical simulation and experimental results. The test results demonstrate that thermal variation rate of current gain is below 10% in 25 ℃-85 ℃ and 20% in -55 ℃-25 ℃.
文摘Methods for improving the high current performance of static induction transistor (SIT) are presented.Many important factors,such as "trans-conductance per unit channel width" θ, "gate efficiency" η, "sensitivity factor" D,and "intrinsic static gain" μ0,that may be used to describe different aspects of the electrical performance of an SIT are first defined.The dependences of electrical parameters on the structure and technological process of an SIT are revealed for the first time.The packaging technologies are so important for the improvement of high power performance of SITs that they must be paid attention.Testing techniques and circuits for measuring frequency and power parameters of SITs are designed and constructed.The influence of packaging processes in technological practice on the electrical performance of SITs is also discussed in depth.