The eight-node and forty-DOF piezoelectric shell element were applied to shape control of a flat shell structure. By the direct and converse effects, a distributed piezoelectric sensor layer was used to monitor the sh...The eight-node and forty-DOF piezoelectric shell element were applied to shape control of a flat shell structure. By the direct and converse effects, a distributed piezoelectric sensor layer was used to monitor the shape deformation and a distributed actuator layer was used to suppresse the deflection. A finite element model was for static response of laminated shell with piezoelectric sensors/actuators was derived. The model was verified by calculating piezoelectric polymeric PVDF bimorph beam. The results are in good agreement with those obtained by theoretical analysis of Tzou and Hwang . A case study of the static shape control of a flat shell structure is presented.展开更多
基金Project 985-Automotive Engineering of Jilin University
文摘The eight-node and forty-DOF piezoelectric shell element were applied to shape control of a flat shell structure. By the direct and converse effects, a distributed piezoelectric sensor layer was used to monitor the shape deformation and a distributed actuator layer was used to suppresse the deflection. A finite element model was for static response of laminated shell with piezoelectric sensors/actuators was derived. The model was verified by calculating piezoelectric polymeric PVDF bimorph beam. The results are in good agreement with those obtained by theoretical analysis of Tzou and Hwang . A case study of the static shape control of a flat shell structure is presented.