Objective: Nationwide dissemination of public-access defibrillation (PAD) contributed to an increase of survival rate in Japan. We analysed cardiac arrests (CAs) that occurred in railroad stations in Tokyo to evaluate...Objective: Nationwide dissemination of public-access defibrillation (PAD) contributed to an increase of survival rate in Japan. We analysed cardiac arrests (CAs) that occurred in railroad stations in Tokyo to evaluate PAD in the metropolis. Methods: We collected Utstein data from the Tokyo Fire Department (TFD) and analysed CA cases that occurred in stations. In total, 245 non-traumatic CAs from January 1, 2007 to March 31, 2008 were analysed;CAs in children under 8 years were excluded. Results: The rates of pre-hospital return of spontaneous circulation (ROSC) were 41 out of 145 witnessed CA patients (28.3%) and 12 ROSC out of 100 unwitnessed CA patients (12%). Of 245 CA cases, bystander cardiopulmonary resuscitation (CPR) performed in 156 (63.7%), automated external defibrillator (AED) used in 117 (47.8%) and shock delivered in 65 (26.5%). Rates of ROSC were 31.6% (37/117) with AED use significantly higher than those of 12.5% (16/128) without AED use (P < 0.001). Most CAs occurred on platforms;the use of AEDs on platforms increased from 18/31 (58.1%) in 2007 to 32/43 (74.4%) in 2008 and ROSC rates increased from 8 (25.8%) to 14 (32.6%), respectively. On train CAs: ROSC cases were very few, 1 case each year (8.3%;7.7%) while the use of AED increased from 8/12 (66.7%) in 2007 to 10/13 (76.9%) in 2008. Conclusion: Bystander CPR and the use of AED at railroad stations improved ROSC for out-of-hospital cardiac arrest (OHCA) patients. AED location and strategies for dealing with CAs on trains should be re-evaluated.展开更多
5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and ...5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.展开更多
In the big forest countries, there is an actual challenge of accessing the forests for their resources, operational wildfire management, and economic estimations for various purposes. In Russia, there are two ways to ...In the big forest countries, there is an actual challenge of accessing the forests for their resources, operational wildfire management, and economic estimations for various purposes. In Russia, there are two ways to access the forests: by air and by ground means. The first way is quite expensive for any country. The second one is less expensive but has the spatial planning challenges to create access routes by existing public roads and forest glades. Regional authorities and firefighting departments are paying attention to the access by ground means, but there is a certain room to improve their management and cooperation methods on a limited budget. These tasks could be solved by GIS-technologies in a more operational manner to automate the routes’ construction especially during the fire season. We used combined geoinformation technology (developed previously) and satellite product, namely vegetation map from Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate how accessible any forest area is when moving by public roads and forest glades from a fire station as a starting point. These stations are the main centers to fight the forest fires within the territory of ground protection zones in Russia and we have considered them as the logistic centers to manage the forest resources also. Transport model was created in two variants: no-barriers and barriers-based (forestries). By using these two models we have shown two different scenarios of action. The key area was Novosibirsk Region located in the Siberian Federal District, Russia. We have created a series of maps to show the transport accessibility of forest areas from the fire stations. Estimation of “located” pixels or forest areas accessible from the fire stations for the key area is about 66% - 83%;the most accessible forest type is mixed forests. The number of inaccessible pixels has been increased by more than two times in barriers scenario. Technology can be used for different thematic data sources and domains like ecology or economy.展开更多
为提高非正交多址接入(non-orthogonal multiple access,NOMA)增强型设备到设备(device-to-device,D2D)组链路的鲁棒性和能效,考虑非理想信道状态信息(channel station information,CSI),提出一种能效优化的鲁棒资源分配算法.首先,在保...为提高非正交多址接入(non-orthogonal multiple access,NOMA)增强型设备到设备(device-to-device,D2D)组链路的鲁棒性和能效,考虑非理想信道状态信息(channel station information,CSI),提出一种能效优化的鲁棒资源分配算法.首先,在保证子信道分配、蜂窝用户和D2D组最小速率以及D2D组最大传输功率约束下,建立最大最小鲁棒能效模型;其次,考虑最坏情况法将信道不确定性建模为有界信道估计误差,并用泰勒级数展开式、凸松弛、变量转换法将原多变量耦合问题转化为凸优化问题;最后,用拉格朗日对偶理论求解.仿真结果表明,所提出的算法将传输速率控制在最低速率阈值以上,具有良好的鲁棒性,与其他算法相比能效提高了8.3%.展开更多
随着物联网(IoT, internet of things)基站的部署愈发密集,网络干扰管控的重要性愈发凸显。物联网中,设备常采用随机接入,以分布式的方式接入信道。在海量设备的物联网场景中,节点之间可能会出现严重的干扰,导致网络的吞吐量性能严重下...随着物联网(IoT, internet of things)基站的部署愈发密集,网络干扰管控的重要性愈发凸显。物联网中,设备常采用随机接入,以分布式的方式接入信道。在海量设备的物联网场景中,节点之间可能会出现严重的干扰,导致网络的吞吐量性能严重下降。为了解决随机接入网络中的干扰管控问题,考虑基于协作接收的多基站时隙Aloha网络,利用强化学习工具,设计自适应传输算法,实现干扰管控,优化网络的吞吐量性能,并提高网络的公平性。首先,设计了基于Q-学习的自适应传输算法,通过仿真验证了该算法面对不同网络流量时均能保障较高的网络吞吐量性能。其次,为了提高网络的公平性,采用惩罚函数法改进自适应传输算法,并通过仿真验证了面向公平性优化后的算法能够大幅提高网络的公平性,并保障网络的吞吐性能。展开更多
文摘Objective: Nationwide dissemination of public-access defibrillation (PAD) contributed to an increase of survival rate in Japan. We analysed cardiac arrests (CAs) that occurred in railroad stations in Tokyo to evaluate PAD in the metropolis. Methods: We collected Utstein data from the Tokyo Fire Department (TFD) and analysed CA cases that occurred in stations. In total, 245 non-traumatic CAs from January 1, 2007 to March 31, 2008 were analysed;CAs in children under 8 years were excluded. Results: The rates of pre-hospital return of spontaneous circulation (ROSC) were 41 out of 145 witnessed CA patients (28.3%) and 12 ROSC out of 100 unwitnessed CA patients (12%). Of 245 CA cases, bystander cardiopulmonary resuscitation (CPR) performed in 156 (63.7%), automated external defibrillator (AED) used in 117 (47.8%) and shock delivered in 65 (26.5%). Rates of ROSC were 31.6% (37/117) with AED use significantly higher than those of 12.5% (16/128) without AED use (P < 0.001). Most CAs occurred on platforms;the use of AEDs on platforms increased from 18/31 (58.1%) in 2007 to 32/43 (74.4%) in 2008 and ROSC rates increased from 8 (25.8%) to 14 (32.6%), respectively. On train CAs: ROSC cases were very few, 1 case each year (8.3%;7.7%) while the use of AED increased from 8/12 (66.7%) in 2007 to 10/13 (76.9%) in 2008. Conclusion: Bystander CPR and the use of AED at railroad stations improved ROSC for out-of-hospital cardiac arrest (OHCA) patients. AED location and strategies for dealing with CAs on trains should be re-evaluated.
文摘5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.
文摘In the big forest countries, there is an actual challenge of accessing the forests for their resources, operational wildfire management, and economic estimations for various purposes. In Russia, there are two ways to access the forests: by air and by ground means. The first way is quite expensive for any country. The second one is less expensive but has the spatial planning challenges to create access routes by existing public roads and forest glades. Regional authorities and firefighting departments are paying attention to the access by ground means, but there is a certain room to improve their management and cooperation methods on a limited budget. These tasks could be solved by GIS-technologies in a more operational manner to automate the routes’ construction especially during the fire season. We used combined geoinformation technology (developed previously) and satellite product, namely vegetation map from Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate how accessible any forest area is when moving by public roads and forest glades from a fire station as a starting point. These stations are the main centers to fight the forest fires within the territory of ground protection zones in Russia and we have considered them as the logistic centers to manage the forest resources also. Transport model was created in two variants: no-barriers and barriers-based (forestries). By using these two models we have shown two different scenarios of action. The key area was Novosibirsk Region located in the Siberian Federal District, Russia. We have created a series of maps to show the transport accessibility of forest areas from the fire stations. Estimation of “located” pixels or forest areas accessible from the fire stations for the key area is about 66% - 83%;the most accessible forest type is mixed forests. The number of inaccessible pixels has been increased by more than two times in barriers scenario. Technology can be used for different thematic data sources and domains like ecology or economy.
文摘为提高非正交多址接入(non-orthogonal multiple access,NOMA)增强型设备到设备(device-to-device,D2D)组链路的鲁棒性和能效,考虑非理想信道状态信息(channel station information,CSI),提出一种能效优化的鲁棒资源分配算法.首先,在保证子信道分配、蜂窝用户和D2D组最小速率以及D2D组最大传输功率约束下,建立最大最小鲁棒能效模型;其次,考虑最坏情况法将信道不确定性建模为有界信道估计误差,并用泰勒级数展开式、凸松弛、变量转换法将原多变量耦合问题转化为凸优化问题;最后,用拉格朗日对偶理论求解.仿真结果表明,所提出的算法将传输速率控制在最低速率阈值以上,具有良好的鲁棒性,与其他算法相比能效提高了8.3%.
文摘随着物联网(IoT, internet of things)基站的部署愈发密集,网络干扰管控的重要性愈发凸显。物联网中,设备常采用随机接入,以分布式的方式接入信道。在海量设备的物联网场景中,节点之间可能会出现严重的干扰,导致网络的吞吐量性能严重下降。为了解决随机接入网络中的干扰管控问题,考虑基于协作接收的多基站时隙Aloha网络,利用强化学习工具,设计自适应传输算法,实现干扰管控,优化网络的吞吐量性能,并提高网络的公平性。首先,设计了基于Q-学习的自适应传输算法,通过仿真验证了该算法面对不同网络流量时均能保障较高的网络吞吐量性能。其次,为了提高网络的公平性,采用惩罚函数法改进自适应传输算法,并通过仿真验证了面向公平性优化后的算法能够大幅提高网络的公平性,并保障网络的吞吐性能。