It is possible to improve the service level of the new subway station by analysing the passenger flow characteristics and optimizing the design of the pedestrian facilities of a station. In this paper, through the inv...It is possible to improve the service level of the new subway station by analysing the passenger flow characteristics and optimizing the design of the pedestrian facilities of a station. In this paper, through the investigation of passenger flow status of different types of subway station on different sections, and analysis of the passenger flow characteristics of pedestrian facilities, such as station channels, stairs and escalators, some suggestions of pedestrian facilities parameters of the station design are put forward.展开更多
为满足城市轨道交通车站精细化客运组织需求,对车站进出站客流特性进行有效的分类管理。结合自动售检票系统(auto fare collection,AFC)采集的进出站客流数据,从车站进出站客流总量及时序特性方面入手,提出一种基于K-means算法的双层规...为满足城市轨道交通车站精细化客运组织需求,对车站进出站客流特性进行有效的分类管理。结合自动售检票系统(auto fare collection,AFC)采集的进出站客流数据,从车站进出站客流总量及时序特性方面入手,提出一种基于K-means算法的双层规划聚类方法对全线所有车站进行聚类并划分车站类型。首先以车站进出站客运总量为特征指标进行上层聚类,得出不同客运规模的车站大类;然后考虑车站进出站客流的时变特征,根据不同时段内的客流变化特点构建特征向量进行下层聚类,识别车站客流的时序分布特性。研究结果表明:利用本算法得到的分类结果与实际高度吻合,不同类别车站在客运规模和时变特性上差异明显。双层K-means聚类分析算法通过把握客运规模和客流时变特征,对车站进行精细划分,为车站的客运组织提供依据。展开更多
文摘It is possible to improve the service level of the new subway station by analysing the passenger flow characteristics and optimizing the design of the pedestrian facilities of a station. In this paper, through the investigation of passenger flow status of different types of subway station on different sections, and analysis of the passenger flow characteristics of pedestrian facilities, such as station channels, stairs and escalators, some suggestions of pedestrian facilities parameters of the station design are put forward.
文摘为满足城市轨道交通车站精细化客运组织需求,对车站进出站客流特性进行有效的分类管理。结合自动售检票系统(auto fare collection,AFC)采集的进出站客流数据,从车站进出站客流总量及时序特性方面入手,提出一种基于K-means算法的双层规划聚类方法对全线所有车站进行聚类并划分车站类型。首先以车站进出站客运总量为特征指标进行上层聚类,得出不同客运规模的车站大类;然后考虑车站进出站客流的时变特征,根据不同时段内的客流变化特点构建特征向量进行下层聚类,识别车站客流的时序分布特性。研究结果表明:利用本算法得到的分类结果与实际高度吻合,不同类别车站在客运规模和时变特性上差异明显。双层K-means聚类分析算法通过把握客运规模和客流时变特征,对车站进行精细划分,为车站的客运组织提供依据。