Electromagnetic detection satellite(EDS) is a type of Earth observation satellite(EOS). Satellites observation and data down-link scheduling plays a significant role in improving the efficiency of satellite observ...Electromagnetic detection satellite(EDS) is a type of Earth observation satellite(EOS). Satellites observation and data down-link scheduling plays a significant role in improving the efficiency of satellite observation systems. However, the current works mainly focus on the scheduling of imaging satellites, little work focuses on the scheduling of EDSes for its specific requirements.And current works mainly schedule satellite resources and data down-link resources separately, not considering them in a globally optimal perspective. The EDSes and data down-link resources are scheduled in an integrated process and the scheduling result is searched globally. Considering the specific constraints of EDS, a coordinate scheduling model for EDS observation tasks and data transmission jobs is established and an algorithm based on the genetic algorithm is proposed. Furthermore, the convergence of our algorithm is proved. To deal with some specific constraints, a solution repairing algorithm of polynomial computing time is designed. Finally, some experiments are conducted to validate the correctness and practicability of our scheduling algorithms.展开更多
The problems of ITRF2008,the latest International Terrestrial Reference Frame,are pointed out and analyzed as follows:(1) ITRF is not a mm-level Terrestrial Reference Frame;(2) the origin of ITRF is neither the Earth&...The problems of ITRF2008,the latest International Terrestrial Reference Frame,are pointed out and analyzed as follows:(1) ITRF is not a mm-level Terrestrial Reference Frame;(2) the origin of ITRF is neither the Earth's center of mass (CM) nor the center of figure (CF);(3) the scale of ITRF is not a uniform system in the sense of the gravitational theory of relativity.These problems result from the linear hypothesis used in the establishment and maintenance of ITRF,which includes the linear hypothesis of the coordinates definition of the ITRF reference stations,and the seven coordinate transformation parameters (three translation parameters,three rotation parameters,and one scale parameter) when the ITRF combine solution is constructed.The linear hypothesis of the ITRF construction leads to the current terrestrial reference frame only at the cm-level,which cannot satisfy the requirements of monitoring mm-level crust movements as well as the global environment.This article points out that the construction of a mm-level Terrestrial Reference Frame is actually a leap from linear to nonlinear.Therefore,according to the main characteristics of nonlinear changes of the crust's deformation,the geocenter motion and the overall height fluctuation of the Earth,the new ITRF station coordinates definition and the new observation equations of combined solutions are constructed for the realization of a mm-level nonlinear ITRF,which can solve the problems of the current ITRF.展开更多
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘Electromagnetic detection satellite(EDS) is a type of Earth observation satellite(EOS). Satellites observation and data down-link scheduling plays a significant role in improving the efficiency of satellite observation systems. However, the current works mainly focus on the scheduling of imaging satellites, little work focuses on the scheduling of EDSes for its specific requirements.And current works mainly schedule satellite resources and data down-link resources separately, not considering them in a globally optimal perspective. The EDSes and data down-link resources are scheduled in an integrated process and the scheduling result is searched globally. Considering the specific constraints of EDS, a coordinate scheduling model for EDS observation tasks and data transmission jobs is established and an algorithm based on the genetic algorithm is proposed. Furthermore, the convergence of our algorithm is proved. To deal with some specific constraints, a solution repairing algorithm of polynomial computing time is designed. Finally, some experiments are conducted to validate the correctness and practicability of our scheduling algorithms.
基金supported by the National Natural Science Foundation of China (Grant No.10603011)the National High Technology Research and Development Program (Grant No.2009AA12Z307)+1 种基金the Science and Technology Commission of Shanghai Municipality (Grant Nos.05QMX1462 and 08ZR1422400)the Youth Foundation of Knowledge Innovation Project of the Chinese Academy of Sciences,Shanghai Astronomical Observatory (Grant No.5120090304)
文摘The problems of ITRF2008,the latest International Terrestrial Reference Frame,are pointed out and analyzed as follows:(1) ITRF is not a mm-level Terrestrial Reference Frame;(2) the origin of ITRF is neither the Earth's center of mass (CM) nor the center of figure (CF);(3) the scale of ITRF is not a uniform system in the sense of the gravitational theory of relativity.These problems result from the linear hypothesis used in the establishment and maintenance of ITRF,which includes the linear hypothesis of the coordinates definition of the ITRF reference stations,and the seven coordinate transformation parameters (three translation parameters,three rotation parameters,and one scale parameter) when the ITRF combine solution is constructed.The linear hypothesis of the ITRF construction leads to the current terrestrial reference frame only at the cm-level,which cannot satisfy the requirements of monitoring mm-level crust movements as well as the global environment.This article points out that the construction of a mm-level Terrestrial Reference Frame is actually a leap from linear to nonlinear.Therefore,according to the main characteristics of nonlinear changes of the crust's deformation,the geocenter motion and the overall height fluctuation of the Earth,the new ITRF station coordinates definition and the new observation equations of combined solutions are constructed for the realization of a mm-level nonlinear ITRF,which can solve the problems of the current ITRF.