TEQC is used to check the observations quality of 173 GPS campaign stations in the Northeast and North China. Each station was observed with an occupation of 4 days. The quality of the 692 data files is analyzed by th...TEQC is used to check the observations quality of 173 GPS campaign stations in the Northeast and North China. Each station was observed with an occupation of 4 days. The quality of the 692 data files is analyzed by the ratio of overall observations to possible observations, MP1, MP2 and the ratio of observations to slips. The reasons for multipath and cycle slips can be derived from the photos taken in the field. The results show that the coverage of trees and buildings/structures, and the interference of high-voltage power lines near the stations are the main reasons. In a small area, the horizontal velocity field in the period 2011-2013 is exemplified, where the magnitudes and directions of the 4 stations' rates are clearly different with that of other stations. It seems that the error caused by the worse environment cannot be mitigated through post processing. Therefore, these conclusions can help the establishment of GNSS stations, measurements, data processing and formulating standards in future.展开更多
The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical mode...The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical model and GIS (geographic quality monitoring station) in municipality area. The pollutants which can be harmful to people living in the area. The three steps of mapping process were performed under the GIS environment using the existing vehicle emission rates and pollutant dispersion model. First, traffic volume, road network, and the emission rates of road segments varying with types of vehicle were collected from existing data. Second, the pollutant concentrations were calculated by use of CALINE4, a tool with Gaussian dispersion model. The model parameters include emission rate, wind directions and speeds, ambient temperature and observed pollutant concentration, and atmospheric stability during all seasons from the January 1, 2010 to May 31,2011 with regardless the rainy season. This resulted in concentrations at many receptor points along links of the road network. Third, distributions of pollution concentrations were generated by means of the spatial interpolation of those from receptors. The results of pollution raster-based maps are used for determining frequency of violence and combined pollution map. The resulting frequency of violence and intensity concentration will be further integrated to determine a potential area of AQMS. Finally, achieving pollution potential area of AQMS can be located as helpful basic data for efficient traffic and transportation planning.展开更多
基金supported by the China National Special Fund for Earthquake Scientific Research(201508003,201508009)
文摘TEQC is used to check the observations quality of 173 GPS campaign stations in the Northeast and North China. Each station was observed with an occupation of 4 days. The quality of the 692 data files is analyzed by the ratio of overall observations to possible observations, MP1, MP2 and the ratio of observations to slips. The reasons for multipath and cycle slips can be derived from the photos taken in the field. The results show that the coverage of trees and buildings/structures, and the interference of high-voltage power lines near the stations are the main reasons. In a small area, the horizontal velocity field in the period 2011-2013 is exemplified, where the magnitudes and directions of the 4 stations' rates are clearly different with that of other stations. It seems that the error caused by the worse environment cannot be mitigated through post processing. Therefore, these conclusions can help the establishment of GNSS stations, measurements, data processing and formulating standards in future.
文摘The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical model and GIS (geographic quality monitoring station) in municipality area. The pollutants which can be harmful to people living in the area. The three steps of mapping process were performed under the GIS environment using the existing vehicle emission rates and pollutant dispersion model. First, traffic volume, road network, and the emission rates of road segments varying with types of vehicle were collected from existing data. Second, the pollutant concentrations were calculated by use of CALINE4, a tool with Gaussian dispersion model. The model parameters include emission rate, wind directions and speeds, ambient temperature and observed pollutant concentration, and atmospheric stability during all seasons from the January 1, 2010 to May 31,2011 with regardless the rainy season. This resulted in concentrations at many receptor points along links of the road network. Third, distributions of pollution concentrations were generated by means of the spatial interpolation of those from receptors. The results of pollution raster-based maps are used for determining frequency of violence and combined pollution map. The resulting frequency of violence and intensity concentration will be further integrated to determine a potential area of AQMS. Finally, achieving pollution potential area of AQMS can be located as helpful basic data for efficient traffic and transportation planning.