A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filterin...A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filtering algorithm to effectively filter out noise and minimize interference in the measurement results.Testing conducted under normal temperature conditions has demonstrated the system's high precision performance.However,it was observed that temperature variations can affect the measurement performance.Data were collected across temperatures ranging from -20 to 70℃,and a temperature correction model was established through linear regression fitting to address this issue.The feasibility of the temperature correction model was confirmed at temperatures of -5 and 40℃,where relative errors remained below 0.1% after applying the temperature correction.The research indicates that the designed measurement system exhibits excellent temperature adaptability and high precision,making it particularly suitable for measuring weak currents.展开更多
The current–phase relations of a ring-trapped Bose–Einstein condensate interrupted by a rotating rectangular barrier are extensively investigated with an analytical solution. A current–phase diagram, single and mul...The current–phase relations of a ring-trapped Bose–Einstein condensate interrupted by a rotating rectangular barrier are extensively investigated with an analytical solution. A current–phase diagram, single and multi-valued relation, is presented with a rescaled barrier height and width. Our results show that the finite size makes the current–phase relation deviate a little bit from the cosine form for the soliton solution in the limit of a vanishing barrier, and the periodic boundary condition selects only the plane wave solution in the case of high barrier. The reason for multi-valued current–phase relation is given by investigating the behavior of soliton solution.展开更多
With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current me...With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current measurement technology is also emerging. This article’s design idea is based on two-dimensional reluctance sensor device built non-contact weak current detection system. The system uses the reluctance sensor HMC1002 to collect the current signal and the temperature sensor DS18B20 to compensate the temperature. The signals collected by the reluctance sensor and the temperature sensor are extremely weak. After being amplified by the amplifying circuit, the signal is conducive to subsequent detection and processing. Filter circuit can filter out interference signals to achieve the goal of improving accuracy. After the corresponding algorithm of the microcontroller will convert the signal voltage, easy to read and store, thus designing a non-contact current measurement capable of detecting weak currents and achieving higher accuracy.展开更多
The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a ...The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.展开更多
A CMOS voltage reference, which is based on VGs and/x ΔGS in the weak inversion region, has been designed and implemented in standard 0.6μm CMOS technology. No diodes and parasitic bipolar junction transistors (BJT...A CMOS voltage reference, which is based on VGs and/x ΔGS in the weak inversion region, has been designed and implemented in standard 0.6μm CMOS technology. No diodes and parasitic bipolar junction transistors (BJTs) are used. The proposed voltage reference uses a current-mode topology by summing a PTAT current and a CTAT current into a re- sistor to generate the required reference voltage. It can also provide more than one reference voltage output, which is quite suitable for systems requiring many different reference voltages simultaneously. The occupied chip area is 0. 023mm^-2 . The operation supply voltage is from 2.5 to 6V, and the maximum supply current is 8.25μA. The designed three different out- puts are respectively about 203mV, 1.0V, and 2.05V at room temperature when the supply voltage is 4V. The circuit achieves a temperature coefficient of 31ppm/℃ in the temperature range of 0 to 100℃ and an average line regulation of ± 0. 203%/V. The voltage reference has been successfully applied in a white LED backlight driver chip.展开更多
基金supported by the Youth Science Foundation of Sichuan Province(Nos.2022NSFSC1230 and 2022NSFSC1231)the Science and Technology Innovation Seedling Project of Sichuan Province(No.MZGC20230080)+1 种基金the General project of the National Natural Science Foundation of China(No.12075039)the Key project of the National Natural Science Foundation of China(No.U19A2086)。
文摘A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filtering algorithm to effectively filter out noise and minimize interference in the measurement results.Testing conducted under normal temperature conditions has demonstrated the system's high precision performance.However,it was observed that temperature variations can affect the measurement performance.Data were collected across temperatures ranging from -20 to 70℃,and a temperature correction model was established through linear regression fitting to address this issue.The feasibility of the temperature correction model was confirmed at temperatures of -5 and 40℃,where relative errors remained below 0.1% after applying the temperature correction.The research indicates that the designed measurement system exhibits excellent temperature adaptability and high precision,making it particularly suitable for measuring weak currents.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874247)the National Key Research and Development Program of China(Grant Nos.2017YFA0304500 and 2017YFA0304203)+1 种基金PCSIRT,China(Grant No.IRT-17R70)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices,China(Grant No.KF201703)
文摘The current–phase relations of a ring-trapped Bose–Einstein condensate interrupted by a rotating rectangular barrier are extensively investigated with an analytical solution. A current–phase diagram, single and multi-valued relation, is presented with a rescaled barrier height and width. Our results show that the finite size makes the current–phase relation deviate a little bit from the cosine form for the soliton solution in the limit of a vanishing barrier, and the periodic boundary condition selects only the plane wave solution in the case of high barrier. The reason for multi-valued current–phase relation is given by investigating the behavior of soliton solution.
文摘With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current measurement technology is also emerging. This article’s design idea is based on two-dimensional reluctance sensor device built non-contact weak current detection system. The system uses the reluctance sensor HMC1002 to collect the current signal and the temperature sensor DS18B20 to compensate the temperature. The signals collected by the reluctance sensor and the temperature sensor are extremely weak. After being amplified by the amplifying circuit, the signal is conducive to subsequent detection and processing. Filter circuit can filter out interference signals to achieve the goal of improving accuracy. After the corresponding algorithm of the microcontroller will convert the signal voltage, easy to read and store, thus designing a non-contact current measurement capable of detecting weak currents and achieving higher accuracy.
文摘The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.
文摘A CMOS voltage reference, which is based on VGs and/x ΔGS in the weak inversion region, has been designed and implemented in standard 0.6μm CMOS technology. No diodes and parasitic bipolar junction transistors (BJTs) are used. The proposed voltage reference uses a current-mode topology by summing a PTAT current and a CTAT current into a re- sistor to generate the required reference voltage. It can also provide more than one reference voltage output, which is quite suitable for systems requiring many different reference voltages simultaneously. The occupied chip area is 0. 023mm^-2 . The operation supply voltage is from 2.5 to 6V, and the maximum supply current is 8.25μA. The designed three different out- puts are respectively about 203mV, 1.0V, and 2.05V at room temperature when the supply voltage is 4V. The circuit achieves a temperature coefficient of 31ppm/℃ in the temperature range of 0 to 100℃ and an average line regulation of ± 0. 203%/V. The voltage reference has been successfully applied in a white LED backlight driver chip.