期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Limsup Results and LIL for Partial Sum Processes of a Gaussian Random Field 被引量:1
1
作者 Yong-Kab CHOI Mikls CSRG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第9期1497-1506,共10页
Let {&#958;<SUB> j </SUB>; j &#8712; &#8484;<SUB>+</SUB><SUP> d </SUP>be a centered stationary Gaussian random field, where &#8484;<SUB>+</SUB><SUP>... Let {&#958;<SUB> j </SUB>; j &#8712; &#8484;<SUB>+</SUB><SUP> d </SUP>be a centered stationary Gaussian random field, where &#8484;<SUB>+</SUB><SUP> d </SUP>is the d-dimensional lattice of all points in d-dimensional Euclidean space &#8477;<SUP>d</SUP>, having nonnegative integer coordinates. For each j = (j <SUB>1 </SUB>, ..., jd) in &#8484;<SUB>+</SUB><SUP> d </SUP>, we denote |j| = j <SUB>1 </SUB>... j <SUB>d </SUB>and for m, n &#8712; &#8484;<SUB>+</SUB><SUP> d </SUP>, define S(m, n] = &#931;<SUB> m【j&#8804;n </SUB>&#950;<SUB> j </SUB>, &#963;<SUP>2</SUP>(|n&#8722;m|) = ES <SUP>2 </SUP>(m, n], S <SUB>n </SUB>= S(0, n] and S <SUB>0 </SUB>= 0. Assume that &#963;(|n|) can be extended to a continuous function &#963;(t) of t 】 0, which is nondecreasing and regularly varying with exponent &#945; at b &#8805; 0 for some 0 【 &#945; 【 1. Under some additional conditions, we study limsup results for increments of partial sum processes and prove as well the law of the iterated logarithm for such partial sum processes. 展开更多
关键词 stationary gaussian random field regularly varying function large deviation probability law of the iterated logarithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部