Comparing two population proportions using confidence interval could be misleading in many cases, such </span><span style="font-family:Verdana;">as</span><span style="font-family:Ve...Comparing two population proportions using confidence interval could be misleading in many cases, such </span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> the sample size </span><span style="font-family:Verdana;">being</span><span style="font-family:Verdana;"> small and the test </span><span style="font-family:Verdana;">being</span><span style="font-family:Verdana;"> based on normal approximation. In this case, the only </span><span style="font-family:Verdana;">one</span><span style="font-family:Verdana;"> option that we have is to collect a large sample. Unfortunately, the large sample might not be possible. One example is a person suffering from a rare disease. The main purpose of this journal is to derive a closed formula for the exact distribution of the difference between two independent sample proportions, and use it to perform related inferences such as a confidence interval, regardless of the sample sizes and compare with the existing Wald, Agresti-Caffo </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Score. In this journal, we have derived a closed formula for the exact distribution of the difference between two independent sample proportions. This distribution doesn’t need any </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and can be used to perform inferences such </span><span style="font-family:Verdana;">as:</span><span style="font-family:Verdana;"> a hypothesis test for two population proportions, regardless of the nature of the distribution and the sample sizes. We claim </span><span style="font-family:Verdana;">that</span><span style="font-family:Verdana;"> exact distribution has the </span><span style="font-family:Verdana;">least</span><span style="font-family:Verdana;"> confidence width among Wald, Agresti-Caffo </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Score, so it is suitable for inferences of the difference between the population proportion regardless of sample size.展开更多
Moments and cumulants are commonly used to characterize the probability distribution or observed data set. The use of the moment method of parameter estimation is also common in the construction of an appropriate para...Moments and cumulants are commonly used to characterize the probability distribution or observed data set. The use of the moment method of parameter estimation is also common in the construction of an appropriate parametric distribution for a certain data set. The moment method does not always produce satisfactory results. It is difficult to determine exactly what information concerning the shape of the distribution is expressed by its moments of the third and higher order. In the case of small samples in particular, numerical values of sample moments can be very different from the corresponding values of theoretical moments of the relevant probability distribution from which the random sample comes. Parameter estimations of the probability distribution made by the moment method are often considerably less accurate than those obtained using other methods, particularly in the case of small samples. The present paper deals with an alternative approach to the construction of an appropriate parametric distribution for the considered data set using order statistics.展开更多
In the field of supercritical wing design, various principles and rules have been summarized through theoretical and experimental analyses. Compared with black-box relationships between geometry parameters and perform...In the field of supercritical wing design, various principles and rules have been summarized through theoretical and experimental analyses. Compared with black-box relationships between geometry parameters and performances, quantitative physical laws about pressure distributions and performances are clearer and more beneficial to designers. With the advancement of computational fluid dynamics and computational intelligence, discovering new rules through statistical analysis on computers has become increasingly attractive and affordable. This paper proposes a novel sampling method for the statistical study on pressure distribution features and performances, so that new physical laws can be revealed. It utilizes an adaptive sampling algorithm, of which the criteria are developed based on Kullback–Leibler divergence and Euclidean distance.In this paper, the proposed method is employed to generate airfoil samples to study the relationships between the supercritical pressure distribution features and the drag divergence Mach number as well as the drag creep characteristic. Compared with conventional sampling methods, the proposed method can efficiently distribute samples in the pressure distribution feature space rather than directly sampling airfoil geometry parameters. The corresponding geometry parameters are searched and found under constraints, so that supercritical airfoil samples that are well distributed in the pressure distribution space are obtained. These samples allow statistical studies to obtain more reliable and universal aerodynamic rules that can be applied to supercritical airfoil designs.展开更多
A composite random variable is a product (or sum of products) of statistically distributed quantities. Such a variable can represent the solution to a multi-factor quantitative problem submitted to a large, diverse, i...A composite random variable is a product (or sum of products) of statistically distributed quantities. Such a variable can represent the solution to a multi-factor quantitative problem submitted to a large, diverse, independent, anonymous group of non-expert respondents (the “crowd”). The objective of this research is to examine the statistical distribution of solutions from a large crowd to a quantitative problem involving image analysis and object counting. Theoretical analysis by the author, covering a range of conditions and types of factor variables, predicts that composite random variables are distributed log-normally to an excellent approximation. If the factors in a problem are themselves distributed log-normally, then their product is rigorously log-normal. A crowdsourcing experiment devised by the author and implemented with the assistance of a BBC (British Broadcasting Corporation) television show, yielded a sample of approximately 2000 responses consistent with a log-normal distribution. The sample mean was within ~12% of the true count. However, a Monte Carlo simulation (MCS) of the experiment, employing either normal or log-normal random variables as factors to model the processes by which a crowd of 1 million might arrive at their estimates, resulted in a visually perfect log-normal distribution with a mean response within ~5% of the true count. The results of this research suggest that a well-modeled MCS, by simulating a sample of responses from a large, rational, and incentivized crowd, can provide a more accurate solution to a quantitative problem than might be attainable by direct sampling of a smaller crowd or an uninformed crowd, irrespective of size, that guesses randomly.展开更多
Ranked set sample is applicable whenever ranking of a set of sample units can be done easily by a judgement method of the study variable or of the auxiliary variable. This paper considers ranked set sample based on th...Ranked set sample is applicable whenever ranking of a set of sample units can be done easily by a judgement method of the study variable or of the auxiliary variable. This paper considers ranked set sample based on the auxiliary variable X which is correlated with the study variable Y, where (X, Y) follows Morgenstern type bivariate exponential distribution. The authors discuss the optional allocation for unbiased estimators of the correlation coefficient p of the random variables X and Y when the auxiliary variable X is used for ranking the sample units and the study variable Y is measured for estimating the correlation coefficient. This paper first gives a class of unbiased estimators of p when the mean 0 of the study variable Y is known and obtains an essentially complete subclass of this class. Further, the optimal allocation of the unbiased estimators is found in this subclass and is proved to be Bayes, admissible, and minimax. Finally, the unbiased estimator of p under the optimal allocation in the case of known θ is reformed for estimating p in the case of unknown θ, and the reformed estimator is shown to be strongly consistent.展开更多
In this paper,the Rama distribution(RD)is considered,and a new model called extended Rama distribution(ERD)is suggested.The new model involves the sum of two independent Rama distributed random variables.The probabili...In this paper,the Rama distribution(RD)is considered,and a new model called extended Rama distribution(ERD)is suggested.The new model involves the sum of two independent Rama distributed random variables.The probability density function(pdf)and cumulative distribution function(cdf)are obtained and analyzed.It is found that the new model is skewed to the right.Several mathematical and statistical properties are derived and proved.The properties studied include moments,coefficient of variation,coefficient of skewness,coefficient of kurtosis and moment generating function.Some simulations are undertaken to illustrate the behavior of these properties.In addition,the reliability analysis of the distribution is investigated through the hazard rate function,reversed hazard rate function and odds function.The parameter of the distribution is estimated based on the maximum likelihood method.The distributions of order statistics for ERD are also presented.The performance of the suggested model is compared with several other lifetime distributions based on some goodness of fit tests on a real dataset.It turns out that the suggested model is more flexible than its competitors considered in this study,for modeling real lifetime data.展开更多
Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the ...Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the stable operation of the production process,the condition monitoring and fault diagnosis of equipment have become equally important.The fault diagnosis of equipment in actual production is often challenged by variable working conditions,large differences in data distribution,and lack of labeled samples,etc.Traditional fault diagnosis methods are often difficult to achieve ideal results in these complex environments.Transfer learning(TL)as an emerging technology can effectively utilize existing knowledge and data to improve the diagnostic performance.Firstly,this paper analyzes the trend of mechanical equipment fault diagnosis and explains the basic concept of TL.Then TL based on parameters,TL based on features,TL based on instances and domain adaptive(DA)methods are summarized and analyzed in terms of existing TL methods.Finally,the problems faced in the current TL research are summarized and the future development trend is pointed out.This review aims to help researchers in related fields understand the latest progress of TL and promote the application and development of TL in mechanical equipment diagnosis.展开更多
文摘Comparing two population proportions using confidence interval could be misleading in many cases, such </span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> the sample size </span><span style="font-family:Verdana;">being</span><span style="font-family:Verdana;"> small and the test </span><span style="font-family:Verdana;">being</span><span style="font-family:Verdana;"> based on normal approximation. In this case, the only </span><span style="font-family:Verdana;">one</span><span style="font-family:Verdana;"> option that we have is to collect a large sample. Unfortunately, the large sample might not be possible. One example is a person suffering from a rare disease. The main purpose of this journal is to derive a closed formula for the exact distribution of the difference between two independent sample proportions, and use it to perform related inferences such as a confidence interval, regardless of the sample sizes and compare with the existing Wald, Agresti-Caffo </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Score. In this journal, we have derived a closed formula for the exact distribution of the difference between two independent sample proportions. This distribution doesn’t need any </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and can be used to perform inferences such </span><span style="font-family:Verdana;">as:</span><span style="font-family:Verdana;"> a hypothesis test for two population proportions, regardless of the nature of the distribution and the sample sizes. We claim </span><span style="font-family:Verdana;">that</span><span style="font-family:Verdana;"> exact distribution has the </span><span style="font-family:Verdana;">least</span><span style="font-family:Verdana;"> confidence width among Wald, Agresti-Caffo </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Score, so it is suitable for inferences of the difference between the population proportion regardless of sample size.
文摘Moments and cumulants are commonly used to characterize the probability distribution or observed data set. The use of the moment method of parameter estimation is also common in the construction of an appropriate parametric distribution for a certain data set. The moment method does not always produce satisfactory results. It is difficult to determine exactly what information concerning the shape of the distribution is expressed by its moments of the third and higher order. In the case of small samples in particular, numerical values of sample moments can be very different from the corresponding values of theoretical moments of the relevant probability distribution from which the random sample comes. Parameter estimations of the probability distribution made by the moment method are often considerably less accurate than those obtained using other methods, particularly in the case of small samples. The present paper deals with an alternative approach to the construction of an appropriate parametric distribution for the considered data set using order statistics.
基金supported by the National Natural Science Foundation of China(Nos.91852108 and 11872230)。
文摘In the field of supercritical wing design, various principles and rules have been summarized through theoretical and experimental analyses. Compared with black-box relationships between geometry parameters and performances, quantitative physical laws about pressure distributions and performances are clearer and more beneficial to designers. With the advancement of computational fluid dynamics and computational intelligence, discovering new rules through statistical analysis on computers has become increasingly attractive and affordable. This paper proposes a novel sampling method for the statistical study on pressure distribution features and performances, so that new physical laws can be revealed. It utilizes an adaptive sampling algorithm, of which the criteria are developed based on Kullback–Leibler divergence and Euclidean distance.In this paper, the proposed method is employed to generate airfoil samples to study the relationships between the supercritical pressure distribution features and the drag divergence Mach number as well as the drag creep characteristic. Compared with conventional sampling methods, the proposed method can efficiently distribute samples in the pressure distribution feature space rather than directly sampling airfoil geometry parameters. The corresponding geometry parameters are searched and found under constraints, so that supercritical airfoil samples that are well distributed in the pressure distribution space are obtained. These samples allow statistical studies to obtain more reliable and universal aerodynamic rules that can be applied to supercritical airfoil designs.
文摘A composite random variable is a product (or sum of products) of statistically distributed quantities. Such a variable can represent the solution to a multi-factor quantitative problem submitted to a large, diverse, independent, anonymous group of non-expert respondents (the “crowd”). The objective of this research is to examine the statistical distribution of solutions from a large crowd to a quantitative problem involving image analysis and object counting. Theoretical analysis by the author, covering a range of conditions and types of factor variables, predicts that composite random variables are distributed log-normally to an excellent approximation. If the factors in a problem are themselves distributed log-normally, then their product is rigorously log-normal. A crowdsourcing experiment devised by the author and implemented with the assistance of a BBC (British Broadcasting Corporation) television show, yielded a sample of approximately 2000 responses consistent with a log-normal distribution. The sample mean was within ~12% of the true count. However, a Monte Carlo simulation (MCS) of the experiment, employing either normal or log-normal random variables as factors to model the processes by which a crowd of 1 million might arrive at their estimates, resulted in a visually perfect log-normal distribution with a mean response within ~5% of the true count. The results of this research suggest that a well-modeled MCS, by simulating a sample of responses from a large, rational, and incentivized crowd, can provide a more accurate solution to a quantitative problem than might be attainable by direct sampling of a smaller crowd or an uninformed crowd, irrespective of size, that guesses randomly.
基金supported by the National Natural Science Foundation of China under Grant Nos.10571070 and 11001097
文摘Ranked set sample is applicable whenever ranking of a set of sample units can be done easily by a judgement method of the study variable or of the auxiliary variable. This paper considers ranked set sample based on the auxiliary variable X which is correlated with the study variable Y, where (X, Y) follows Morgenstern type bivariate exponential distribution. The authors discuss the optional allocation for unbiased estimators of the correlation coefficient p of the random variables X and Y when the auxiliary variable X is used for ranking the sample units and the study variable Y is measured for estimating the correlation coefficient. This paper first gives a class of unbiased estimators of p when the mean 0 of the study variable Y is known and obtains an essentially complete subclass of this class. Further, the optimal allocation of the unbiased estimators is found in this subclass and is proved to be Bayes, admissible, and minimax. Finally, the unbiased estimator of p under the optimal allocation in the case of known θ is reformed for estimating p in the case of unknown θ, and the reformed estimator is shown to be strongly consistent.
基金The authors extend their appreciation to Universiti Kebangsaan Malaysia for providing a partial funding for the work under the grant number GGPM-2017-124 and TAP-K017073 which were obtained by Mohd Aftar Abu Bakar.
文摘In this paper,the Rama distribution(RD)is considered,and a new model called extended Rama distribution(ERD)is suggested.The new model involves the sum of two independent Rama distributed random variables.The probability density function(pdf)and cumulative distribution function(cdf)are obtained and analyzed.It is found that the new model is skewed to the right.Several mathematical and statistical properties are derived and proved.The properties studied include moments,coefficient of variation,coefficient of skewness,coefficient of kurtosis and moment generating function.Some simulations are undertaken to illustrate the behavior of these properties.In addition,the reliability analysis of the distribution is investigated through the hazard rate function,reversed hazard rate function and odds function.The parameter of the distribution is estimated based on the maximum likelihood method.The distributions of order statistics for ERD are also presented.The performance of the suggested model is compared with several other lifetime distributions based on some goodness of fit tests on a real dataset.It turns out that the suggested model is more flexible than its competitors considered in this study,for modeling real lifetime data.
基金National Natural Science Foundation of China(52065030)Key Scientific Research Projects of Yunnan Province(202202AC080008).
文摘Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the stable operation of the production process,the condition monitoring and fault diagnosis of equipment have become equally important.The fault diagnosis of equipment in actual production is often challenged by variable working conditions,large differences in data distribution,and lack of labeled samples,etc.Traditional fault diagnosis methods are often difficult to achieve ideal results in these complex environments.Transfer learning(TL)as an emerging technology can effectively utilize existing knowledge and data to improve the diagnostic performance.Firstly,this paper analyzes the trend of mechanical equipment fault diagnosis and explains the basic concept of TL.Then TL based on parameters,TL based on features,TL based on instances and domain adaptive(DA)methods are summarized and analyzed in terms of existing TL methods.Finally,the problems faced in the current TL research are summarized and the future development trend is pointed out.This review aims to help researchers in related fields understand the latest progress of TL and promote the application and development of TL in mechanical equipment diagnosis.