To overcome the large time-delay in measuring the hardness of mixed rubber, rheological parameters were used to predict the hardness. A novel Q-based model updating strategy was proposed as a universal platform to tra...To overcome the large time-delay in measuring the hardness of mixed rubber, rheological parameters were used to predict the hardness. A novel Q-based model updating strategy was proposed as a universal platform to track time-varying properties. Using a few selected support samples to update the model, the strategy could dramat- ically save the storage cost and overcome the adverse influence of low signal-to-noise ratio samples. Moreover, it could be applied to any statistical process monitoring system without drastic changes to them, which is practical for industrial practices. As examples, the Q-based strategy was integrated with three popular algorithms (partial least squares (PIE), recursive PIE (RPLS), and kernel PIE (KPIE)) to form novel regression ones, QPLS, QRPIE and QKPLS, respectively. The applications for predicting mixed rubber hardness on a large-scale tire plant in east China prove the theoretical considerations.展开更多
In order to solve such problems as lack of dynamic evaluation system in evaluation of quality and safety trust of dairy products,and weak awareness of prevention,it is necessary to introduce the statistical process co...In order to solve such problems as lack of dynamic evaluation system in evaluation of quality and safety trust of dairy products,and weak awareness of prevention,it is necessary to introduce the statistical process control into the quality and safety trust evaluation system of dairy products,and establish quality and safety trust early warning model for dairy products,so as to determine the control limit of control chart and carry out early warning according to eight criteria. According to the empirical results,the statistical process control is helpful for finding the hidden process risks and providing the necessary basis for enterprises taking positive measures to raise the confidence of consumers.展开更多
Purpose: To test the concept of Statistical Process Control (SPC) as a Quality Assurance (QA) procedure for dose verifications in external beam radiation therapy in conventional and 3D Conformal Radiotherapy (3D-CRT) ...Purpose: To test the concept of Statistical Process Control (SPC) as a Quality Assurance (QA) procedure for dose verifications in external beam radiation therapy in conventional and 3D Conformal Radiotherapy (3D-CRT) treatment of cervical cancer. Materials and Methods: A study of QA verification of target doses of 198 cervical cancer patients undergoing External Beam Radiotherapy (EBRT) treatments at two different cancer treatment centers in Kenya was conducted. The target doses were determined from measured entrance doses by the diode in vivo dosimetry. Process Behavior Charts (PBC) developed by SPC were applied for setting Action Thresholds (AT) on the target doses. The AT set was then proposed as QA limits for acceptance or rejection of verified target doses overtime of the EBRT process. Result and Discussion: Target doses for the 198 patients were calculated and SPC applied to test whether the action limits set by the Process Behavior Charts could be applied as QA for verified doses in EBRT. Results for the two sub-groups of n = 3 and n = 4 that were tested produced action thresholds which are within clinical dose specifications for both conventional AP/PA and 3D-CRT EBRT treatment techniques for cervical cancer. Conclusion: Action thresholds set by SPC were within the clinical dose specification of ±5% uncertainty for both conventional AP/PA and 3D-CRT EBRT treatment techniques for cervical cancer. So the concept of SPC could be applied in setting QA action limits for dose verifications in EBRT.展开更多
Introduction: The present work was devoted to assess the awareness and usage of quality control tools with the emphasis on statistical process control in Ethiopian manufacturing industries. Semi structured questionnai...Introduction: The present work was devoted to assess the awareness and usage of quality control tools with the emphasis on statistical process control in Ethiopian manufacturing industries. Semi structured questionnaire has been employed to executive and technical managers of manufacturing industries of various size and specialism across the country. Stratified random sample method by region was used to select sample industries for the study. The samples used for this study are industries mainly from Oromiya, Addis Ababa, Tigray, Amara, SNNP and Diredawa regions proportional to their size of the available industries. Methods: Exploratory method and descriptive statistics was used for data analysis. Available documents and reports related to quality control policy of the selected companies were investigated. Results and Discussions: The number of manufacturing industries involved in this study was 44. Of the sampled manufacturing industries about 60% are from Oromiya and Addis Ababa regions. It has been reported that 100% of the respondents said that the importance of quality control tools is very important to their organizations’ productivity and quality improvement (Figure 3). Quality control professionals were also asked the extent to which quality control system is working in their industry and majority of the respondents (45%) have indicated that quality control system is working to some extent in their respective industries (Figure 18). Conclusions and Recommendations: Most of the quality department of the industries did not fully recognize the importance of statistical process control as quality control tools. This is mainly due to lack of awareness and motivation of the top managements, shortage of man power in the area, and others together would make it difficult to apply quality control tools in their organization. In general, the industries in Ethiopia are deficient in vigor and found to be stagnant hence less exposed to a highly competitive market and don’t adopt the latest quality control techniques in order to gain knowledge about systems to improve quality and operational performance. We conclude that quality management system has to be established as an independent entity with a real power and hence the quality control department which is responsible for quality can make an irreversible decision with respect to quality of any given product. Moreover, the concerned bodies (government and ministry of industries) should give attention and work together with universities to ensure how these statistical process control techniques could be incorporated in a curriculum of the universities at higher levels in degree and masters programs. Furthermore, different trainings which could improve quality and efficiency of their respective management system should be given as short and long term to the employees including top and middle managers found in various industries relevant to their process.展开更多
Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic n...Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.展开更多
For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control mac...For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.展开更多
Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares ...Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.展开更多
The aim of this study was to establish a control system for saccharification process using quality control charts. To achieve this goal, temperature, pH and brix were measured at 12 minutes intervals for 15 consecutiv...The aim of this study was to establish a control system for saccharification process using quality control charts. To achieve this goal, temperature, pH and brix were measured at 12 minutes intervals for 15 consecutive batches which took 2 hours each. The time variations for three process parameters were assessed to establish a good understanding of the saccharification process. The temperature varied between 58℃ and 62℃ while the pH decreased slowly due to oxidation, values of which varied between 5.7 and 5.0. Brix values increased linearly with time. The initial and final values of the three parameters varied from one batch to another. Of the three parameters, brix was not well represented on the quality control charts due to wide difference between initial and final values during saccharification. The final brix values varied between batches, from 10.6% to 11.6%. The control charts used in this study were X-bar and Range charts. The rules for interpreting control charts were implemented for both X-bar and R charts, results of which showed that the process was out of control, although some rules were not violated due to little number of batches studied. The values of for temperature and pH data (2.27℃ and 0.35, respectively) were lower compared to brix data (11.2%). The corresponding values of span between control limits, SP<sub>x</sub> and SP<sub>R</sub> for temperature and pH were also comparatively lower than those established from brix data. Due to larger values of for brix measurements, the corresponding control charts for brix were insensitive in identifying out-of-control points during saccharification process.展开更多
Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have no...Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply.展开更多
To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics ...To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics (measurable or countable) and detecting situations that seem to present certain anomalies. The control chart is one of these tools widely used in quality management. In the process of managing the COVID-19 pandemic, this tool will make it possible to know at all times whether the parameters monitored such as the positivity rate, the recovery rate, and the mortality rate, are under control and to act accordingly. Monitoring cure and mortality rates will also show us the effectiveness of the treatments used.展开更多
Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other m...Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other model parameters,so the economic design method is often not effective in producing charts that can quickly detect small shifts before substantial losses occur;on the other hand,in many cases,only one type of process shift or only one pair of process shifts are taken into consideration,which may not correctly reflect the actual process conditions.To improve the behavior of economic design of control chart,a cost & loss model with Taguchi's loss function for the economic design of X & S control charts is embellished,which is regarded as an optimization problem with multiple statistical constraints.The optimization design is also carried out based on a number of combinations of process shifts collected from the field operation of the conventional control charts,thus more hidden information about the shift combinations is mined and employed to the optimization design of control charts.At the same time,an improved particle swarm optimization(IPSO) is developed to solve such an optimization problem in design of X & S control charts,IPSO is first tested for several benchmark problems from the literature and evaluated with standard performance metrics.Experimental results show that the proposed algorithm has significant advantages on obtaining the optimal design parameters of the charts.The proposed method can substantially reduce the total cost(or loss) of the control charts,and it will be a promising tool for economic design of control charts.展开更多
Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on s...Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.展开更多
A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberran...A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberrant values or outliers due to the significant fluctuation of this sort of data, which is influenced by Climate change and the environment. With accelerating industrial expansion and rising population density in Kolkata City, air pollution is continuously rising. This study involves two phases, in the first phase imputation of missing values and second detection of outliers using Statistical Process Control (SPC), and Functional Data Analysis (FDA), studies to achieve the efficacy of the outlier identification methodology proposed with working days and Nonworking days of the variables NO<sub>2</sub>, SO<sub>2</sub>, and O<sub>3</sub>, which were used for a year in a row in Kolkata, India. The results show how the functional data approach outshines traditional outlier detection methods. The outcomes show that functional data analysis vibrates more than the other two approaches after imputation, and the suggested outlier detector is absolutely appropriate for the precise detection of outliers in highly variable data.展开更多
From a regulatory perspective,drug quality consistency evaluation must concern different processes used for the same drug.In this study,an assessment strategy based on quality by design(QbD)was developed for populatio...From a regulatory perspective,drug quality consistency evaluation must concern different processes used for the same drug.In this study,an assessment strategy based on quality by design(QbD)was developed for population pharmaceutical quality evaluation.A descriptive analysis method based on QbD concept was first established to characterize the process by critical evaluation attributes(CEAs).Then quantitative analysis method based on an improved statistical process control(SPC)method was established to investigate the process indicators(PIs)in the process population,such as mean distribution,batch-to-batch difference and abnormal quality probability.After that rules for risk assessment were established based on the SPC limitations and parameters.Both the SPC parameters of the CEAs and the risk of PIs were visualized according to the interaction test results to obtain a better understanding of the population pharmaceutical quality.Finally,an assessment strategy was built and applied to generic drug consistency assessment,process risk assessment and quality trend tracking.The strategy demonstrated in this study could help reveal quality consistency from the perspective of process control and process risk,and further show the recent development status of domestic pharmaceutical production processes.In addition,a process risk assessment and population quality trend tracking provide databased information for approval.Not only can this information serve as a further basis for decisionmaking by the regulatory authority regarding early warnings,but it can also reduce some avoidable adverse reactions.With continuous addition of data,dynamic population pharmaceutical quality is meaningful for emergencies and decision-making regarding drug regulation.展开更多
Building energy consumption accounts for nearly 40% of global energy consumption, HVAC (Heating, Ventilating, and Air Conditioning) systems are the major building energy consumers, and as one type of HVAC systems, t...Building energy consumption accounts for nearly 40% of global energy consumption, HVAC (Heating, Ventilating, and Air Conditioning) systems are the major building energy consumers, and as one type of HVAC systems, the heat pump air conditioning system, which is more energy-efficient compared to the traditional air conditioning system, is being more widely used to save energy. However, in northern China, extreme climatic conditions increase the cooling and heating load of the heat pump air conditioning system and accelerate the aging of the equipment, and the sensor may detect drifted parameters owing to climate change. This non-linear drifted parameter increases the false alarm rate of the fault detection and the need for unnecessary troubleshooting. In order to overcome the impact of the device aging and the drifted parameter, a Kalman filter and SPC (statistical process control) fault detection method are introduced in this paper. In this method, the model parameter and its standard variance can he estimated by Kalman filter based on the gray model and the real-time data of the air conditioning system. Further, by using SPC to construct the dynamic control limits, false alarm rate is reduced. And this paper mainly focuses on the cold machine failure in the component failure and its soft fault detection. This approach has been tested on a simulation model of the "Sino-German Energy Conservation Demonstration Center" building heat pump air-conditioning system in Shenyang, China, and the results show that the Kalman filter and SPC fault detection method is simple and highly efficient with a low false alarm rate, and it can deal with the difficulties caused by the extreme environment and the non-linear influence of the parameters, and what's more, it provides a good foundation for dynamic fault diagnosis and fault prediction analysis.展开更多
Automatic process control (APC) based on design of experiment (DOE) is a cost-efficient approach for variation reduction. The process changes both in mean and variance owing to online parameter adjustment make it hard...Automatic process control (APC) based on design of experiment (DOE) is a cost-efficient approach for variation reduction. The process changes both in mean and variance owing to online parameter adjustment make it hard to apply traditional SPC charts in such DOE-based APC applied process. An adaptive SPC scheme is developed, which can better track the process transitions and achieve the possible SPC run cost reduction when the process is stable. The control law of SPC parameters is designed by fully utilizing the estimation properties of the process model instead of traditionally using the data collected from the production line. An example is provided to illustrate the proposed adaptive SPC design approach.展开更多
A novel method, independent component analysis ( ICA ) , is introduced to gas metal arc welding (GMAW) process monitoring. ICA was applied to arc signals, i. e. welding current and arc voltage, to remove the corre...A novel method, independent component analysis ( ICA ) , is introduced to gas metal arc welding (GMAW) process monitoring. ICA was applied to arc signals, i. e. welding current and arc voltage, to remove the correlation between them and extract an independent component IC. Two series of robotic GMA W experiments were carried out to study the feasibility of ICA for online monitoring. It was found that IC put up an abnormity when there was a step disturbance in the welding process. Experimental results showed that the IC could be used as a state variable representing the process variation. By applying statistical process control (SPC) for the obtained IC, a burning-through defect was isolated from the normal operation. The comparison between ICA and principal component analysis (PCA) was also made for the processes, which led to an interesting result and was in need for further study.展开更多
Pulsed spray is a useful tool forgranule size control in fluid bed granulation.To improve the quality control of pulsed-spray fluid bed granulation,a combination of in-line near-infrared(NIR)spectroscopy and p「incipa...Pulsed spray is a useful tool forgranule size control in fluid bed granulation.To improve the quality control of pulsed-spray fluid bed granulation,a combination of in-line near-infrared(NIR)spectroscopy and p「incipal component analysis was used to develop multivariate statistical process control(MSPC)charts.Different types of MSPC charts were developed,including principal component score charts,Hotelling's T2 control charts,and distance to model X control charts,to monitor the batch evolution throughout the granulation process.Correlation optimized warping was used as an alignment method to deal with the time variation in batches caused by the granulation mechanism in MSPC modeling.The control charts developed in this study were validated on normal batches and tested on four batches that deviated from normal processing conditions to achieve real-time fault analysis.The results indicated that the NIR spectroscopy-based MSPC model included the variability in the sample set constituting the model and could withstand external variability.This research demonstrated the application of synchronized NIR spectra in conjunction w让h multivariate batch modeling as an attractive tool for process monitoring and a fault diagnosis method for effective process control in pulsed-spray fluid bed granulation.展开更多
Autocorrelation is prevalent in continuous production processes, such as the processes in the chemical and pharmaceutical industries. With the development of measurement technology and data acquisition technology, sam...Autocorrelation is prevalent in continuous production processes, such as the processes in the chemical and pharmaceutical industries. With the development of measurement technology and data acquisition technology, sampling frequency is getting higher and the existence of autocorrelation cannot be ignored. This paper analyzes five estimation schemes of process capability for autocorrelated data. Comparisons among these schemes are discussed for small sample and large sample. In conclusion, this paper gives a procedure of process capability analysis for autocorrelated data.展开更多
Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in ...Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in the eye of users. The monitoring and improvement of a manufacturing process are the strength of statistical process control. In this article we propose a process monitoring memory-based scheme for continuous data under the assumption of normality to detect small non-random shift patterns in any manufacturing or service process.The control limits for the proposed scheme are constructed. The in-control and out-of-control average run length(AVL) expressions have been derived for the performance evaluation of the proposed scheme. Robustness to non-normality has been tested after simulation study of the run length distribution of the proposed scheme, and the comparisons with Shewhart and exponentially weighted moving average(EWMA) schemes are presented for various gamma and t-distributions. The proposed scheme is effective and attractive as it has one design parameter which differentiates it from the traditional schemes. Finally, some suggestions and recommendations are made for the future work.展开更多
文摘To overcome the large time-delay in measuring the hardness of mixed rubber, rheological parameters were used to predict the hardness. A novel Q-based model updating strategy was proposed as a universal platform to track time-varying properties. Using a few selected support samples to update the model, the strategy could dramat- ically save the storage cost and overcome the adverse influence of low signal-to-noise ratio samples. Moreover, it could be applied to any statistical process monitoring system without drastic changes to them, which is practical for industrial practices. As examples, the Q-based strategy was integrated with three popular algorithms (partial least squares (PIE), recursive PIE (RPLS), and kernel PIE (KPIE)) to form novel regression ones, QPLS, QRPIE and QKPLS, respectively. The applications for predicting mixed rubber hardness on a large-scale tire plant in east China prove the theoretical considerations.
基金Supported by Program of Chongqing University of Arts and Sciences(Z2014JG14)Young Scholar Project of Humanities and Social Science Foundation of Ministry of Education(15XJC790002)
文摘In order to solve such problems as lack of dynamic evaluation system in evaluation of quality and safety trust of dairy products,and weak awareness of prevention,it is necessary to introduce the statistical process control into the quality and safety trust evaluation system of dairy products,and establish quality and safety trust early warning model for dairy products,so as to determine the control limit of control chart and carry out early warning according to eight criteria. According to the empirical results,the statistical process control is helpful for finding the hidden process risks and providing the necessary basis for enterprises taking positive measures to raise the confidence of consumers.
文摘Purpose: To test the concept of Statistical Process Control (SPC) as a Quality Assurance (QA) procedure for dose verifications in external beam radiation therapy in conventional and 3D Conformal Radiotherapy (3D-CRT) treatment of cervical cancer. Materials and Methods: A study of QA verification of target doses of 198 cervical cancer patients undergoing External Beam Radiotherapy (EBRT) treatments at two different cancer treatment centers in Kenya was conducted. The target doses were determined from measured entrance doses by the diode in vivo dosimetry. Process Behavior Charts (PBC) developed by SPC were applied for setting Action Thresholds (AT) on the target doses. The AT set was then proposed as QA limits for acceptance or rejection of verified target doses overtime of the EBRT process. Result and Discussion: Target doses for the 198 patients were calculated and SPC applied to test whether the action limits set by the Process Behavior Charts could be applied as QA for verified doses in EBRT. Results for the two sub-groups of n = 3 and n = 4 that were tested produced action thresholds which are within clinical dose specifications for both conventional AP/PA and 3D-CRT EBRT treatment techniques for cervical cancer. Conclusion: Action thresholds set by SPC were within the clinical dose specification of ±5% uncertainty for both conventional AP/PA and 3D-CRT EBRT treatment techniques for cervical cancer. So the concept of SPC could be applied in setting QA action limits for dose verifications in EBRT.
文摘Introduction: The present work was devoted to assess the awareness and usage of quality control tools with the emphasis on statistical process control in Ethiopian manufacturing industries. Semi structured questionnaire has been employed to executive and technical managers of manufacturing industries of various size and specialism across the country. Stratified random sample method by region was used to select sample industries for the study. The samples used for this study are industries mainly from Oromiya, Addis Ababa, Tigray, Amara, SNNP and Diredawa regions proportional to their size of the available industries. Methods: Exploratory method and descriptive statistics was used for data analysis. Available documents and reports related to quality control policy of the selected companies were investigated. Results and Discussions: The number of manufacturing industries involved in this study was 44. Of the sampled manufacturing industries about 60% are from Oromiya and Addis Ababa regions. It has been reported that 100% of the respondents said that the importance of quality control tools is very important to their organizations’ productivity and quality improvement (Figure 3). Quality control professionals were also asked the extent to which quality control system is working in their industry and majority of the respondents (45%) have indicated that quality control system is working to some extent in their respective industries (Figure 18). Conclusions and Recommendations: Most of the quality department of the industries did not fully recognize the importance of statistical process control as quality control tools. This is mainly due to lack of awareness and motivation of the top managements, shortage of man power in the area, and others together would make it difficult to apply quality control tools in their organization. In general, the industries in Ethiopia are deficient in vigor and found to be stagnant hence less exposed to a highly competitive market and don’t adopt the latest quality control techniques in order to gain knowledge about systems to improve quality and operational performance. We conclude that quality management system has to be established as an independent entity with a real power and hence the quality control department which is responsible for quality can make an irreversible decision with respect to quality of any given product. Moreover, the concerned bodies (government and ministry of industries) should give attention and work together with universities to ensure how these statistical process control techniques could be incorporated in a curriculum of the universities at higher levels in degree and masters programs. Furthermore, different trainings which could improve quality and efficiency of their respective management system should be given as short and long term to the employees including top and middle managers found in various industries relevant to their process.
基金Supported by National Natural Science Foundation of China (No. 70931004)
文摘Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.
基金National Natural Science Foundation of China (70931004)
文摘For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.
基金Supported by the National High-Tech Development Program of China(No.863-511-920-011,2001AA411230).
文摘Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.
文摘The aim of this study was to establish a control system for saccharification process using quality control charts. To achieve this goal, temperature, pH and brix were measured at 12 minutes intervals for 15 consecutive batches which took 2 hours each. The time variations for three process parameters were assessed to establish a good understanding of the saccharification process. The temperature varied between 58℃ and 62℃ while the pH decreased slowly due to oxidation, values of which varied between 5.7 and 5.0. Brix values increased linearly with time. The initial and final values of the three parameters varied from one batch to another. Of the three parameters, brix was not well represented on the quality control charts due to wide difference between initial and final values during saccharification. The final brix values varied between batches, from 10.6% to 11.6%. The control charts used in this study were X-bar and Range charts. The rules for interpreting control charts were implemented for both X-bar and R charts, results of which showed that the process was out of control, although some rules were not violated due to little number of batches studied. The values of for temperature and pH data (2.27℃ and 0.35, respectively) were lower compared to brix data (11.2%). The corresponding values of span between control limits, SP<sub>x</sub> and SP<sub>R</sub> for temperature and pH were also comparatively lower than those established from brix data. Due to larger values of for brix measurements, the corresponding control charts for brix were insensitive in identifying out-of-control points during saccharification process.
基金supported by National Natural Science Foundation of China (Grant No. 70931004,Grant No. 70802043)
文摘Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply.
文摘To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics (measurable or countable) and detecting situations that seem to present certain anomalies. The control chart is one of these tools widely used in quality management. In the process of managing the COVID-19 pandemic, this tool will make it possible to know at all times whether the parameters monitored such as the positivity rate, the recovery rate, and the mortality rate, are under control and to act accordingly. Monitoring cure and mortality rates will also show us the effectiveness of the treatments used.
基金supported by Defense Industrial Technology Development Program of China (Grant No. A2520110003)
文摘Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other model parameters,so the economic design method is often not effective in producing charts that can quickly detect small shifts before substantial losses occur;on the other hand,in many cases,only one type of process shift or only one pair of process shifts are taken into consideration,which may not correctly reflect the actual process conditions.To improve the behavior of economic design of control chart,a cost & loss model with Taguchi's loss function for the economic design of X & S control charts is embellished,which is regarded as an optimization problem with multiple statistical constraints.The optimization design is also carried out based on a number of combinations of process shifts collected from the field operation of the conventional control charts,thus more hidden information about the shift combinations is mined and employed to the optimization design of control charts.At the same time,an improved particle swarm optimization(IPSO) is developed to solve such an optimization problem in design of X & S control charts,IPSO is first tested for several benchmark problems from the literature and evaluated with standard performance metrics.Experimental results show that the proposed algorithm has significant advantages on obtaining the optimal design parameters of the charts.The proposed method can substantially reduce the total cost(or loss) of the control charts,and it will be a promising tool for economic design of control charts.
基金National Natural Foundation of China (No.60421002, No.70471052)
文摘Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.
文摘A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberrant values or outliers due to the significant fluctuation of this sort of data, which is influenced by Climate change and the environment. With accelerating industrial expansion and rising population density in Kolkata City, air pollution is continuously rising. This study involves two phases, in the first phase imputation of missing values and second detection of outliers using Statistical Process Control (SPC), and Functional Data Analysis (FDA), studies to achieve the efficacy of the outlier identification methodology proposed with working days and Nonworking days of the variables NO<sub>2</sub>, SO<sub>2</sub>, and O<sub>3</sub>, which were used for a year in a row in Kolkata, India. The results show how the functional data approach outshines traditional outlier detection methods. The outcomes show that functional data analysis vibrates more than the other two approaches after imputation, and the suggested outlier detector is absolutely appropriate for the precise detection of outliers in highly variable data.
基金The National Major Scientific and Technological Special Project for‘Significant New Drugs Development’(Grant No.:2017ZX0901001-007)provides support for this study.
文摘From a regulatory perspective,drug quality consistency evaluation must concern different processes used for the same drug.In this study,an assessment strategy based on quality by design(QbD)was developed for population pharmaceutical quality evaluation.A descriptive analysis method based on QbD concept was first established to characterize the process by critical evaluation attributes(CEAs).Then quantitative analysis method based on an improved statistical process control(SPC)method was established to investigate the process indicators(PIs)in the process population,such as mean distribution,batch-to-batch difference and abnormal quality probability.After that rules for risk assessment were established based on the SPC limitations and parameters.Both the SPC parameters of the CEAs and the risk of PIs were visualized according to the interaction test results to obtain a better understanding of the population pharmaceutical quality.Finally,an assessment strategy was built and applied to generic drug consistency assessment,process risk assessment and quality trend tracking.The strategy demonstrated in this study could help reveal quality consistency from the perspective of process control and process risk,and further show the recent development status of domestic pharmaceutical production processes.In addition,a process risk assessment and population quality trend tracking provide databased information for approval.Not only can this information serve as a further basis for decisionmaking by the regulatory authority regarding early warnings,but it can also reduce some avoidable adverse reactions.With continuous addition of data,dynamic population pharmaceutical quality is meaningful for emergencies and decision-making regarding drug regulation.
基金Supported by the National Natural Science Foundation Committee of China(61503259)China Postdoctoral Science Foundation Funded Project(2017M611261)+1 种基金Chinese Scholarship Council(201608210107)Hanyu Plan of Shenyang Jianzhu University(XKHY2-64)
文摘Building energy consumption accounts for nearly 40% of global energy consumption, HVAC (Heating, Ventilating, and Air Conditioning) systems are the major building energy consumers, and as one type of HVAC systems, the heat pump air conditioning system, which is more energy-efficient compared to the traditional air conditioning system, is being more widely used to save energy. However, in northern China, extreme climatic conditions increase the cooling and heating load of the heat pump air conditioning system and accelerate the aging of the equipment, and the sensor may detect drifted parameters owing to climate change. This non-linear drifted parameter increases the false alarm rate of the fault detection and the need for unnecessary troubleshooting. In order to overcome the impact of the device aging and the drifted parameter, a Kalman filter and SPC (statistical process control) fault detection method are introduced in this paper. In this method, the model parameter and its standard variance can he estimated by Kalman filter based on the gray model and the real-time data of the air conditioning system. Further, by using SPC to construct the dynamic control limits, false alarm rate is reduced. And this paper mainly focuses on the cold machine failure in the component failure and its soft fault detection. This approach has been tested on a simulation model of the "Sino-German Energy Conservation Demonstration Center" building heat pump air-conditioning system in Shenyang, China, and the results show that the Kalman filter and SPC fault detection method is simple and highly efficient with a low false alarm rate, and it can deal with the difficulties caused by the extreme environment and the non-linear influence of the parameters, and what's more, it provides a good foundation for dynamic fault diagnosis and fault prediction analysis.
基金the National Natural Science Foundation of China (50405016 70671065).
文摘Automatic process control (APC) based on design of experiment (DOE) is a cost-efficient approach for variation reduction. The process changes both in mean and variance owing to online parameter adjustment make it hard to apply traditional SPC charts in such DOE-based APC applied process. An adaptive SPC scheme is developed, which can better track the process transitions and achieve the possible SPC run cost reduction when the process is stable. The control law of SPC parameters is designed by fully utilizing the estimation properties of the process model instead of traditionally using the data collected from the production line. An example is provided to illustrate the proposed adaptive SPC design approach.
基金This project is supported by Excellent Young Teachers Program (EYTP) of Ministry of Education (MOE), PRC, Natural ScienceFoundation (NSF) of Guangdong Province (05103543), National NSF (50575075).
文摘A novel method, independent component analysis ( ICA ) , is introduced to gas metal arc welding (GMAW) process monitoring. ICA was applied to arc signals, i. e. welding current and arc voltage, to remove the correlation between them and extract an independent component IC. Two series of robotic GMA W experiments were carried out to study the feasibility of ICA for online monitoring. It was found that IC put up an abnormity when there was a step disturbance in the welding process. Experimental results showed that the IC could be used as a state variable representing the process variation. By applying statistical process control (SPC) for the obtained IC, a burning-through defect was isolated from the normal operation. The comparison between ICA and principal component analysis (PCA) was also made for the processes, which led to an interesting result and was in need for further study.
基金the National Science and Technology Major Project(grant number 2018ZX09201011-002).
文摘Pulsed spray is a useful tool forgranule size control in fluid bed granulation.To improve the quality control of pulsed-spray fluid bed granulation,a combination of in-line near-infrared(NIR)spectroscopy and p「incipal component analysis was used to develop multivariate statistical process control(MSPC)charts.Different types of MSPC charts were developed,including principal component score charts,Hotelling's T2 control charts,and distance to model X control charts,to monitor the batch evolution throughout the granulation process.Correlation optimized warping was used as an alignment method to deal with the time variation in batches caused by the granulation mechanism in MSPC modeling.The control charts developed in this study were validated on normal batches and tested on four batches that deviated from normal processing conditions to achieve real-time fault analysis.The results indicated that the NIR spectroscopy-based MSPC model included the variability in the sample set constituting the model and could withstand external variability.This research demonstrated the application of synchronized NIR spectra in conjunction w让h multivariate batch modeling as an attractive tool for process monitoring and a fault diagnosis method for effective process control in pulsed-spray fluid bed granulation.
基金supported by National Natural Science Foundation of China(70772019,70621061)National Social Science Foundation of China(08BTJ002)
文摘Autocorrelation is prevalent in continuous production processes, such as the processes in the chemical and pharmaceutical industries. With the development of measurement technology and data acquisition technology, sampling frequency is getting higher and the existence of autocorrelation cannot be ignored. This paper analyzes five estimation schemes of process capability for autocorrelated data. Comparisons among these schemes are discussed for small sample and large sample. In conclusion, this paper gives a procedure of process capability analysis for autocorrelated data.
文摘Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in the eye of users. The monitoring and improvement of a manufacturing process are the strength of statistical process control. In this article we propose a process monitoring memory-based scheme for continuous data under the assumption of normality to detect small non-random shift patterns in any manufacturing or service process.The control limits for the proposed scheme are constructed. The in-control and out-of-control average run length(AVL) expressions have been derived for the performance evaluation of the proposed scheme. Robustness to non-normality has been tested after simulation study of the run length distribution of the proposed scheme, and the comparisons with Shewhart and exponentially weighted moving average(EWMA) schemes are presented for various gamma and t-distributions. The proposed scheme is effective and attractive as it has one design parameter which differentiates it from the traditional schemes. Finally, some suggestions and recommendations are made for the future work.