The technique of region of interest-based positron emission tomography is limited by its poor reli-ability and relatively few examined brain regions. In the present study, we compared brain metabo-lism assessed using ...The technique of region of interest-based positron emission tomography is limited by its poor reli-ability and relatively few examined brain regions. In the present study, we compared brain metabo-lism assessed using fluorine-18-fluorodeoxyglucose positron emission tomography between 14 at-tention-deficit hyperactivity disorder (ADHD) patients and 15 normal controls with scoliosis at resting state by statistical parametric mapping. Glucose metabolism was decreased in the left parahippo-campal gyrus, left hippocampus, left anterior cingulate gyrus, right anterior and posterior lobes of the cerebellum, left superior temporal gyrus, left insula, left medial and middle frontal gyri, right medial frontal gyrus, and left basal ganglia (putamen, amygdala, and caudate nucleus) in children with ADHD. These data suggest that children with ADHD exhibit hypometabolism in various brain regions compared to controls, indicating that ADHD symptoms are unlikely the result of abnormalities in specific areas.展开更多
In an effort to cope with the fact that functional magnetic resonance imaging (fMRI) data are spatiotemporally correlated, we propose a novel statistical method with a view to improve the detection of brain regions wi...In an effort to cope with the fact that functional magnetic resonance imaging (fMRI) data are spatiotemporally correlated, we propose a novel statistical method with a view to improve the detection of brain regions with increased neu-ronal activity in fMRI. In this method, we make use of information from neighboring voxels of a voxel, for estimation at the voxel. We examined performance of the method against the statistical parametric mapping (SPM) method using both simulated and real data. The proposed method is shown to be considerably better than the SPM in the context of receiver operating characteristics (ROC) curves.展开更多
Background:The development of computer vision technology has enabled the use of markerless movement tracking for biomechanical analysis.Recent research has reported the feasibility of markerless systems in motion anal...Background:The development of computer vision technology has enabled the use of markerless movement tracking for biomechanical analysis.Recent research has reported the feasibility of markerless systems in motion analysis but has yet to fully explore their utility for capturing faster movements,such as running.Applied studies using markerless systems in clinical and sports settings are still lacking.Thus,the present study compared running biomechanics estimated by marker-based and markerless systems.Given running speed not only affects sports performance but is also associated with clinical injury prevention,diagnosis,and rehabilitation,we aimed to investigate the effects of speed on the comparison of estimated lower extremity joint moments and powers between markerless and marker-based technologies during treadmill running as a concurrent validating study.Methods:Kinematic data from marker-based/markerless technologies were collected,along with ground reaction force data,from 16 young adults running on an instrumented treadmill at 3 speeds:2.24 m/s,2.91 m/s,and 3.58 m/s(5.0 miles/h,6.5 miles/h,and 8.0 miles/h).Sagittal plane moments and powers of the hip,knee,and ankle were calculated by inverse dynamic methods.Time series analysis and statistical parametric mapping were used to determine system differences.Results:Compared to the marker-based system,the markerless system estimated increased lower extremity joint kinetics with faster speed during the swing phase in most cases.Conclusion:Despite the promising application of markerless technology in clinical settings,systematic markerless overestimation requires focused attention.Based on segment pose estimations,the centers of mass estimated by markerless technologies were farther away from the relevant distal joint centers,which led to greater joint moments and powers estimates by markerless vs.marker-based systems.The differences were amplified by running speed.展开更多
文摘The technique of region of interest-based positron emission tomography is limited by its poor reli-ability and relatively few examined brain regions. In the present study, we compared brain metabo-lism assessed using fluorine-18-fluorodeoxyglucose positron emission tomography between 14 at-tention-deficit hyperactivity disorder (ADHD) patients and 15 normal controls with scoliosis at resting state by statistical parametric mapping. Glucose metabolism was decreased in the left parahippo-campal gyrus, left hippocampus, left anterior cingulate gyrus, right anterior and posterior lobes of the cerebellum, left superior temporal gyrus, left insula, left medial and middle frontal gyri, right medial frontal gyrus, and left basal ganglia (putamen, amygdala, and caudate nucleus) in children with ADHD. These data suggest that children with ADHD exhibit hypometabolism in various brain regions compared to controls, indicating that ADHD symptoms are unlikely the result of abnormalities in specific areas.
文摘In an effort to cope with the fact that functional magnetic resonance imaging (fMRI) data are spatiotemporally correlated, we propose a novel statistical method with a view to improve the detection of brain regions with increased neu-ronal activity in fMRI. In this method, we make use of information from neighboring voxels of a voxel, for estimation at the voxel. We examined performance of the method against the statistical parametric mapping (SPM) method using both simulated and real data. The proposed method is shown to be considerably better than the SPM in the context of receiver operating characteristics (ROC) curves.
文摘Background:The development of computer vision technology has enabled the use of markerless movement tracking for biomechanical analysis.Recent research has reported the feasibility of markerless systems in motion analysis but has yet to fully explore their utility for capturing faster movements,such as running.Applied studies using markerless systems in clinical and sports settings are still lacking.Thus,the present study compared running biomechanics estimated by marker-based and markerless systems.Given running speed not only affects sports performance but is also associated with clinical injury prevention,diagnosis,and rehabilitation,we aimed to investigate the effects of speed on the comparison of estimated lower extremity joint moments and powers between markerless and marker-based technologies during treadmill running as a concurrent validating study.Methods:Kinematic data from marker-based/markerless technologies were collected,along with ground reaction force data,from 16 young adults running on an instrumented treadmill at 3 speeds:2.24 m/s,2.91 m/s,and 3.58 m/s(5.0 miles/h,6.5 miles/h,and 8.0 miles/h).Sagittal plane moments and powers of the hip,knee,and ankle were calculated by inverse dynamic methods.Time series analysis and statistical parametric mapping were used to determine system differences.Results:Compared to the marker-based system,the markerless system estimated increased lower extremity joint kinetics with faster speed during the swing phase in most cases.Conclusion:Despite the promising application of markerless technology in clinical settings,systematic markerless overestimation requires focused attention.Based on segment pose estimations,the centers of mass estimated by markerless technologies were farther away from the relevant distal joint centers,which led to greater joint moments and powers estimates by markerless vs.marker-based systems.The differences were amplified by running speed.