Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of noneq...Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of nonequilibrium statistical physical concepts and methods. The microcrack evolution equation is the central equation in the theory.The coefficents of the equation, the microcrack growth rate and the microcrack nucleation rate,come from microscopic atomic mechanism.The solution of the equation connects with macromechanical quantities by the model of the weakest chain. All the other formulas and quantities, for instance, distribution function,fracture probability, reliability, failure rate and macromechanical quantities such as strength, toughness, life etc. and their statistical distribution function and statistical fluctuation are derived in a unified fashion and expressed by a few physical parameters. This theory can be widely applied to various kinds of fracture, such as the brittle, fatigue, delayed and environmental fracture of metals and structural ceramics. The theoretical framework of this theory is given in this paper.展开更多
The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plast...The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plastic work, crack extension force, fracture foughness, critical and crack length, can be derived in a unified fashion.展开更多
Fracture theory is a classic,but not a well-dealt with,difficulty in solid mechanics. This paper has proposed the concept of characteristic fracture length of materials from the fact that fracture happens with area fa...Fracture theory is a classic,but not a well-dealt with,difficulty in solid mechanics. This paper has proposed the concept of characteristic fracture length of materials from the fact that fracture happens with area failure rather than point failure in materials. A unified theory is then proposed,which can be applied both to smooth and defected materials (whether with micro or macro defects). Brittle fracture tests with specimens of different sizes of holes are carried out to examine the fracture theory. It is found that the fracture stresses obtained by experiments agree well with those predicated by the presented fracture theory. Though the brittle fracture is the focus of the paper,the concept of characteristic length can be easily extended to fatigue or other failure problems.展开更多
文摘Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of nonequilibrium statistical physical concepts and methods. The microcrack evolution equation is the central equation in the theory.The coefficents of the equation, the microcrack growth rate and the microcrack nucleation rate,come from microscopic atomic mechanism.The solution of the equation connects with macromechanical quantities by the model of the weakest chain. All the other formulas and quantities, for instance, distribution function,fracture probability, reliability, failure rate and macromechanical quantities such as strength, toughness, life etc. and their statistical distribution function and statistical fluctuation are derived in a unified fashion and expressed by a few physical parameters. This theory can be widely applied to various kinds of fracture, such as the brittle, fatigue, delayed and environmental fracture of metals and structural ceramics. The theoretical framework of this theory is given in this paper.
文摘The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plastic work, crack extension force, fracture foughness, critical and crack length, can be derived in a unified fashion.
基金Supported by the National Natural Science Foundation of China (Grant No. 10772116)
文摘Fracture theory is a classic,but not a well-dealt with,difficulty in solid mechanics. This paper has proposed the concept of characteristic fracture length of materials from the fact that fracture happens with area failure rather than point failure in materials. A unified theory is then proposed,which can be applied both to smooth and defected materials (whether with micro or macro defects). Brittle fracture tests with specimens of different sizes of holes are carried out to examine the fracture theory. It is found that the fracture stresses obtained by experiments agree well with those predicated by the presented fracture theory. Though the brittle fracture is the focus of the paper,the concept of characteristic length can be easily extended to fatigue or other failure problems.