A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond wi...A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond with wavelet transform sequence was established, finally wavelet random coupling model was obtained by wavelet reconstruction algorithm. Then, according to the rainfall data in crop growth period of Farm Chahayang from 1956 to 2008, the wavelet random coupling model was established to fit the model prediction test. The results showed that the prediction and fitting accuracy of the model was high, the model could reflect the rainfall variation regulation in the region, and it was a practical prediction model. It was very important for us to determine reasonably irrigation schedule and to use efficiency coefficient of precipitation resource.展开更多
A statistical dynamic model for forecasting Chinese landfall of tropical cyclones (CLTCs) was developed based on the empirical relationship between the observed CLTC variability and the hindcast atmospheric circulat...A statistical dynamic model for forecasting Chinese landfall of tropical cyclones (CLTCs) was developed based on the empirical relationship between the observed CLTC variability and the hindcast atmospheric circulations from the Pusan National University coupled general circulation model (PNU-CGCM).In the last 31 years,CLTCs have shown strong year-to-year variability,with a maximum frequency in 1994 and a minimum frequency in 1987.Such features were well forecasted by the model.A cross-validation test showed that the correlation between the observed index and the forecasted CLTC index was high,with a coefficient of 0.71.The relative error percentage (16.3%) and root-mean-square error (1.07) were low.Therefore the coupled model performs well in terms of forecasting CLTCs;the model has potential for dynamic forecasting of landfall of tropical cyclones.展开更多
Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading mont...Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and sevenmonth lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960 2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.展开更多
Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by esta...Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.展开更多
The monthly forecast of Indian monsoon rainfall during June to September is investigated by using the hindcast data sets of the National Centre for Environmental Prediction (NCEP)’s operational coupled model (known a...The monthly forecast of Indian monsoon rainfall during June to September is investigated by using the hindcast data sets of the National Centre for Environmental Prediction (NCEP)’s operational coupled model (known as the Climate Forecast System) for 25 years from 1981 to 2005 with 15 ensemble members each. The ensemble mean monthly rainfall over land region of India from CFS with one month lead forecast is underestimated during June to September. With respect to the inter-annual variability of monthly rainfall it is seen that the only significant correlation coefficients (CCs) are found to be for June forecast with May initial condition and September rainfall with August initial conditions. The CFS has got lowest skill for the month of August followed by that of July. Considering the lower skill of monthly forecast based on the ensemble mean, all 15 ensemble members are used separately for the preparation of probability forecast and different probability scores like Brier Score (BS), Brier Skill Score (BSS), Accuracy, Probability of Detection (POD), False Alarm Ratio (FAR), Threat Score (TS) and Heidke Skill Score (HSS) for all the three categories of forecasts (above normal, below normal and normal) have been calculated. In terms of the BS and BSS the skill of the monthly probability forecast in all the three categories are better than the climatology forecasts with positive BSS values except in case of normal forecast of June and July. The “TS”, “HSS” and other scores also provide useful probability forecast in case of CFS except the normal category of July forecast. Thus, it is seen that the monthly probability forecast based on NCEP CFS coupled model during the southwest monsoon season is very encouraging and is found to be very useful.展开更多
A hybrid coupled ocean-atmosphere model is designed, which consists of a global AGCM and a simple anomaly ocean model in the tropical Pacific. Retroactive experimental predictions initiated in each season from 1979 to...A hybrid coupled ocean-atmosphere model is designed, which consists of a global AGCM and a simple anomaly ocean model in the tropical Pacific. Retroactive experimental predictions initiated in each season from 1979 to 1994 are performed. Analyses indicate that: (1) The overall predictive capability of this model for SSTA over the central-eastern tropical Pacific can reach one year, and the error is not larger than 0.8 degrees C. (2) The prediction skill depends greatly on the season when forecasts start. However, the phenomenon of SPB (spring prediction barrier) is not found in the model. (3) The ensemble forecast method can effectively improve prediction results. A new initialization scheme is discussed.展开更多
Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed s...Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed scale because most of existing researches on the initiation mechanism of debris flow took a single slope as the main object. In order to solve this problem, this paper developed a model of debris flow forecast based on the water-soil coupling mechanism at the watershed scale. In this model, the runoff and the instable soil caused by the rainfall in a watershed is estimated by the distrib- uted hydrological model (GBHM) and an instable identification model of the unsaturated soil. Because the debris flow is a special fluid composed of soil and water and has a bigger density, the density esti- mated by the runoff and instable soil mass in a watershed under the action of a rainfall is employed as a key factor to identify the formation probability of debris flow in the forecast model. The Jiangjia Gulley, a typical debris flow valley with a several debris flow events each year, is selected as a case study watershed to test this forecast model of debris flow. According the observation data of Dongchuan Debris Flow Observation and Research Station, CAS located in Jiangjia Gulley, there were 4 debris flow events in 2006. The test results show that the accuracy of the model is satisfied.展开更多
Attaining reliable and timely agricultural estimates is very important everywhere, and in Brazil, due to its characteristics, this is especially true. In this study, estimations of crop production were made based on t...Attaining reliable and timely agricultural estimates is very important everywhere, and in Brazil, due to its characteristics, this is especially true. In this study, estimations of crop production were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) images. The objective was to evaluate the coupled model (CM) performance of crop area and crop yield estimates based solely on MODIS/EVI as input data in Rio Grande do Sul State, which is characterized by high variability in seasonal soybean yields, due to different crop development conditions. The resulting production estimates from CM were compared to official agricultural statistics of Brazilian Institute of Geography and Statistics (IBGE) and the National Company of Food Supply (CONAB) at different levels from 2000/2001 to 2010/2011 crop years. Results obtained with CM indicate that its application is able to generate timely production estimates for soybean both at municipality and local levels. Validation estimates with CM at State level obtained R2 = 0.95. Combining all cropping years at municipality level, estimates were highly correlated to official statistics from IBGE, with R2 = 0.91 and RMSD = 10,840 tons. Spatially interpolated comparisons of yield maps obtained from the CM estimates and IBGE data also showed visual similarity in their spatial distribution. Local level comparisons were performed and presented R2 = 0.95. Implications of this work point out that time-series analysis of production estimates are able to provide anticipated spatial information prior to the soybean harvest.展开更多
A coupled hydro-meteorological modeling system is established for real-time flood forecast and flood alert over the Huaihe River Basin in China. The system consists of the mesoscale atmospheric model MC2 (Canadian Mes...A coupled hydro-meteorological modeling system is established for real-time flood forecast and flood alert over the Huaihe River Basin in China. The system consists of the mesoscale atmospheric model MC2 (Canadian Mesoscale Compressible Community) that is one-way coupled to the Chinese Xinanjiang distributed hydrological model, a grid-based flow routing model, and a module for acquiring real-time gauge precipitation. The system had been successfully tested in a hindcast mode using 1998 and 2003 flood cases in the basin, and has been running daily in a real-time mode for the summers of 2005 and 2006 over the Wangjiaba sub-basin of the Huaihe River Basin. The MC2 precipitation combined with gauge values is used to drive the Xinanjiang model for hydrograph prediction and production of flood alert map. The performance of the system is illustrated through an examination of real-time flood forecasts for the severe flood case of July 4―15, 2005 over the sub-basin, which was the first and largest flood event encountered to date. The 96-h forecasts of MC2 precipitation are first evaluated using observations from 41 rain gauges over the sub-basin. The forecast hydrograph is then validated with observations at the Wangjiaba outlet of the sub-basin. MC2 precipitation generally compares well with gauge values. The flood peak was predicted well in both timing and intensity in the 96-hour forecast using the combined gauge-MC2 precipitation. The real-time flood alert map can spatially display the propagation of forecast floods over the sub-basin. Our forecast hydrograph was used as opera-tional guidance by the Bureau of Hydrograph, Ministry of Water Resources. Such guidance has been proven very useful for the Office of State Flood Control and Drought Relief Headquarters in operational decision making for flood management. The encouraging results demonstrate the potential of using mesoscale atmospheric model precipitation for real-time flood forecast, which can result in a longer lead time compared to traditional methods.展开更多
Coupled hydrological and atmospheric model- ing is an effective tool for providing advanced flood forecasting. However, the uncertainties in precipitation forecasts are still considerable. To address uncertainties, a ...Coupled hydrological and atmospheric model- ing is an effective tool for providing advanced flood forecasting. However, the uncertainties in precipitation forecasts are still considerable. To address uncertainties, a one-way coupled atmospheric-hydrological modeling sys- tem, with a combination of high-resolution and ensemble precipitation forecasting, has been developed. It consists of three high-resolution single models and four sets of ensemble forecasts from the THORPEX Interactive Grande Global Ensemble database. The former provides higher forecasting accuracy, while the latter provides the range of forecasts. The combined precipitation forecasting was then implemented to drive the Chinese National Flood Forecasting System in the 2007 and 2008 Huai River flood hindcast analysis. The encouraging results demonstrated that the system can clearly give a set of forecasting hydrographs for a flood event and has a promising relative stability in discharge peaks and timing for warning purposes. It not only gives a deterministic prediction, but also generates probability forecasts. Even though the signal was not persistent until four days before the peak discharge was observed in the 2007 flood event, the visualization based on threshold exceedance provided clear and concise essential warning information at an early stage. Forecasters could better prepare for the possibility of a flood at an early stage, and then issue an actual warning if the signal strengthened. This process may provide decision support for civil protection authorities. In future studies, different weather forecasts will be assigned various weight coefficients to represent the covariance of predictors and the extremes of distributions.展开更多
基金Supported by Doctoral Foundation Program of Northeast Agricultural University (E090202)Science and Technology Research Program of Educational Committee of Heilongjiang Province, China (11551044)
文摘A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond with wavelet transform sequence was established, finally wavelet random coupling model was obtained by wavelet reconstruction algorithm. Then, according to the rainfall data in crop growth period of Farm Chahayang from 1956 to 2008, the wavelet random coupling model was established to fit the model prediction test. The results showed that the prediction and fitting accuracy of the model was high, the model could reflect the rainfall variation regulation in the region, and it was a practical prediction model. It was very important for us to determine reasonably irrigation schedule and to use efficiency coefficient of precipitation resource.
基金supported by the Chinese Academy of Sciences key program(Grant No. KZCX2-YW-Q03-3)the Korea Meteorological Administration Research and Development Program(Grant No. CATER 2009-1147)+1 种基金the Korea Rural Development Administration Research and Development Programthe National Basic Research Program of China (Grant No. 2009CB421406)
文摘A statistical dynamic model for forecasting Chinese landfall of tropical cyclones (CLTCs) was developed based on the empirical relationship between the observed CLTC variability and the hindcast atmospheric circulations from the Pusan National University coupled general circulation model (PNU-CGCM).In the last 31 years,CLTCs have shown strong year-to-year variability,with a maximum frequency in 1994 and a minimum frequency in 1987.Such features were well forecasted by the model.A cross-validation test showed that the correlation between the observed index and the forecasted CLTC index was high,with a coefficient of 0.71.The relative error percentage (16.3%) and root-mean-square error (1.07) were low.Therefore the coupled model performs well in terms of forecasting CLTCs;the model has potential for dynamic forecasting of landfall of tropical cyclones.
基金supported by the Special Scientific Research Project for Public Interest (Grant No.GYHY201006021)supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate) at the University of Reading
文摘Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and sevenmonth lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960 2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0405401)the National Science&Technology Pillar Program(Grant No.2012BAB03B01)+1 种基金the Fundamental Research Funds for the Central Universities,Hohai University(Grant No.2014B30914)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012411)
文摘Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.
文摘The monthly forecast of Indian monsoon rainfall during June to September is investigated by using the hindcast data sets of the National Centre for Environmental Prediction (NCEP)’s operational coupled model (known as the Climate Forecast System) for 25 years from 1981 to 2005 with 15 ensemble members each. The ensemble mean monthly rainfall over land region of India from CFS with one month lead forecast is underestimated during June to September. With respect to the inter-annual variability of monthly rainfall it is seen that the only significant correlation coefficients (CCs) are found to be for June forecast with May initial condition and September rainfall with August initial conditions. The CFS has got lowest skill for the month of August followed by that of July. Considering the lower skill of monthly forecast based on the ensemble mean, all 15 ensemble members are used separately for the preparation of probability forecast and different probability scores like Brier Score (BS), Brier Skill Score (BSS), Accuracy, Probability of Detection (POD), False Alarm Ratio (FAR), Threat Score (TS) and Heidke Skill Score (HSS) for all the three categories of forecasts (above normal, below normal and normal) have been calculated. In terms of the BS and BSS the skill of the monthly probability forecast in all the three categories are better than the climatology forecasts with positive BSS values except in case of normal forecast of June and July. The “TS”, “HSS” and other scores also provide useful probability forecast in case of CFS except the normal category of July forecast. Thus, it is seen that the monthly probability forecast based on NCEP CFS coupled model during the southwest monsoon season is very encouraging and is found to be very useful.
文摘A hybrid coupled ocean-atmosphere model is designed, which consists of a global AGCM and a simple anomaly ocean model in the tropical Pacific. Retroactive experimental predictions initiated in each season from 1979 to 1994 are performed. Analyses indicate that: (1) The overall predictive capability of this model for SSTA over the central-eastern tropical Pacific can reach one year, and the error is not larger than 0.8 degrees C. (2) The prediction skill depends greatly on the season when forecasts start. However, the phenomenon of SPB (spring prediction barrier) is not found in the model. (3) The ensemble forecast method can effectively improve prediction results. A new initialization scheme is discussed.
基金supported by the foundation of the Research Fund for Commonweal Trades (Meteorology) (No. GYHY201006039)
文摘Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed scale because most of existing researches on the initiation mechanism of debris flow took a single slope as the main object. In order to solve this problem, this paper developed a model of debris flow forecast based on the water-soil coupling mechanism at the watershed scale. In this model, the runoff and the instable soil caused by the rainfall in a watershed is estimated by the distrib- uted hydrological model (GBHM) and an instable identification model of the unsaturated soil. Because the debris flow is a special fluid composed of soil and water and has a bigger density, the density esti- mated by the runoff and instable soil mass in a watershed under the action of a rainfall is employed as a key factor to identify the formation probability of debris flow in the forecast model. The Jiangjia Gulley, a typical debris flow valley with a several debris flow events each year, is selected as a case study watershed to test this forecast model of debris flow. According the observation data of Dongchuan Debris Flow Observation and Research Station, CAS located in Jiangjia Gulley, there were 4 debris flow events in 2006. The test results show that the accuracy of the model is satisfied.
文摘Attaining reliable and timely agricultural estimates is very important everywhere, and in Brazil, due to its characteristics, this is especially true. In this study, estimations of crop production were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) images. The objective was to evaluate the coupled model (CM) performance of crop area and crop yield estimates based solely on MODIS/EVI as input data in Rio Grande do Sul State, which is characterized by high variability in seasonal soybean yields, due to different crop development conditions. The resulting production estimates from CM were compared to official agricultural statistics of Brazilian Institute of Geography and Statistics (IBGE) and the National Company of Food Supply (CONAB) at different levels from 2000/2001 to 2010/2011 crop years. Results obtained with CM indicate that its application is able to generate timely production estimates for soybean both at municipality and local levels. Validation estimates with CM at State level obtained R2 = 0.95. Combining all cropping years at municipality level, estimates were highly correlated to official statistics from IBGE, with R2 = 0.91 and RMSD = 10,840 tons. Spatially interpolated comparisons of yield maps obtained from the CM estimates and IBGE data also showed visual similarity in their spatial distribution. Local level comparisons were performed and presented R2 = 0.95. Implications of this work point out that time-series analysis of production estimates are able to provide anticipated spatial information prior to the soybean harvest.
基金the National Natural Science Foundation of China (Grant No. 40371023)National "948" project (Grant Nos. 200317 and 200758)National Key Technology R&D Program (Grant No. 2006BAC05B02)
文摘A coupled hydro-meteorological modeling system is established for real-time flood forecast and flood alert over the Huaihe River Basin in China. The system consists of the mesoscale atmospheric model MC2 (Canadian Mesoscale Compressible Community) that is one-way coupled to the Chinese Xinanjiang distributed hydrological model, a grid-based flow routing model, and a module for acquiring real-time gauge precipitation. The system had been successfully tested in a hindcast mode using 1998 and 2003 flood cases in the basin, and has been running daily in a real-time mode for the summers of 2005 and 2006 over the Wangjiaba sub-basin of the Huaihe River Basin. The MC2 precipitation combined with gauge values is used to drive the Xinanjiang model for hydrograph prediction and production of flood alert map. The performance of the system is illustrated through an examination of real-time flood forecasts for the severe flood case of July 4―15, 2005 over the sub-basin, which was the first and largest flood event encountered to date. The 96-h forecasts of MC2 precipitation are first evaluated using observations from 41 rain gauges over the sub-basin. The forecast hydrograph is then validated with observations at the Wangjiaba outlet of the sub-basin. MC2 precipitation generally compares well with gauge values. The flood peak was predicted well in both timing and intensity in the 96-hour forecast using the combined gauge-MC2 precipitation. The real-time flood alert map can spatially display the propagation of forecast floods over the sub-basin. Our forecast hydrograph was used as opera-tional guidance by the Bureau of Hydrograph, Ministry of Water Resources. Such guidance has been proven very useful for the Office of State Flood Control and Drought Relief Headquarters in operational decision making for flood management. The encouraging results demonstrate the potential of using mesoscale atmospheric model precipitation for real-time flood forecast, which can result in a longer lead time compared to traditional methods.
基金This work is supported by the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No. 201161), the Program for New Century Excellent Talents in University (Grant No. NCET-12-0842), the Special Public Sector Research Program of Ministry of Water Resources (Grant Nos. 201301040, 201401008, and 201301070), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131368), and the National Water Pollution Control and Management Technology Project of China (Grant No. 2012ZX07101-010).
文摘Coupled hydrological and atmospheric model- ing is an effective tool for providing advanced flood forecasting. However, the uncertainties in precipitation forecasts are still considerable. To address uncertainties, a one-way coupled atmospheric-hydrological modeling sys- tem, with a combination of high-resolution and ensemble precipitation forecasting, has been developed. It consists of three high-resolution single models and four sets of ensemble forecasts from the THORPEX Interactive Grande Global Ensemble database. The former provides higher forecasting accuracy, while the latter provides the range of forecasts. The combined precipitation forecasting was then implemented to drive the Chinese National Flood Forecasting System in the 2007 and 2008 Huai River flood hindcast analysis. The encouraging results demonstrated that the system can clearly give a set of forecasting hydrographs for a flood event and has a promising relative stability in discharge peaks and timing for warning purposes. It not only gives a deterministic prediction, but also generates probability forecasts. Even though the signal was not persistent until four days before the peak discharge was observed in the 2007 flood event, the visualization based on threshold exceedance provided clear and concise essential warning information at an early stage. Forecasters could better prepare for the possibility of a flood at an early stage, and then issue an actual warning if the signal strengthened. This process may provide decision support for civil protection authorities. In future studies, different weather forecasts will be assigned various weight coefficients to represent the covariance of predictors and the extremes of distributions.