In this paper, an improved PI (proportional integral) stator resistance estimation for a DTC (direct torque controlled) induction motor is proposed. This estimation method is based on an on-line stator resistance ...In this paper, an improved PI (proportional integral) stator resistance estimation for a DTC (direct torque controlled) induction motor is proposed. This estimation method is based on an on-line stator resistance correction regarding the variations of the stator current estimation error. In fact, the input variable of the P1 estimator is the stator current estimation error. The main idea is to tune accurately the stator resistance value relatively to the evolution of the stator current estimation error gradient to avoid the drive instability and ensure the tracking of the actual value of the stator resistance. But there is an unavoidable steady state error between the filtered stator current modulus and its estimated value from the dq model of the machine which is due to pseudo random commutations of the inverter switches. This may deteriorate the performance of the proposed fuzzy stator resistance estimator. An offset has been introduced in order to overcome this problem, for different speed command values and load torques. Simulation results show that the proposed estimator was able to successfully track the actual value of the stator resistance lbr different operating conditions.展开更多
文摘In this paper, an improved PI (proportional integral) stator resistance estimation for a DTC (direct torque controlled) induction motor is proposed. This estimation method is based on an on-line stator resistance correction regarding the variations of the stator current estimation error. In fact, the input variable of the P1 estimator is the stator current estimation error. The main idea is to tune accurately the stator resistance value relatively to the evolution of the stator current estimation error gradient to avoid the drive instability and ensure the tracking of the actual value of the stator resistance. But there is an unavoidable steady state error between the filtered stator current modulus and its estimated value from the dq model of the machine which is due to pseudo random commutations of the inverter switches. This may deteriorate the performance of the proposed fuzzy stator resistance estimator. An offset has been introduced in order to overcome this problem, for different speed command values and load torques. Simulation results show that the proposed estimator was able to successfully track the actual value of the stator resistance lbr different operating conditions.