Soil frost heaving is a complex physical, mechanical, and chemical synthesis process. This paper summarizes the frost-heaving theory over half a century, including the capillary theory, the frozen-fringe theory, and t...Soil frost heaving is a complex physical, mechanical, and chemical synthesis process. This paper summarizes the frost-heaving theory over half a century, including the capillary theory, the frozen-fringe theory, and those achievements recently made by scholars. In this paper, we also discus researching achievements of the soil-prediction model during the past 40 years, including the water-dynamics model, the rigid-ice model, the segregation-potential model, and the thermo-dynamic model. This summary and discussion will enable readers to understand the latest direction of research; it also summarizes the development of frost-heave prediction models and their advantages and shortcomings.展开更多
BACKGROUND: Previous studies have demonstrated that scorpion venom in the scorpion can inhibit epilepsy and apoptosis. However, it remains unclear whether ethanol extracts of scorpion (EES) exhibit similar effects....BACKGROUND: Previous studies have demonstrated that scorpion venom in the scorpion can inhibit epilepsy and apoptosis. However, it remains unclear whether ethanol extracts of scorpion (EES) exhibit similar effects. OBJECTIVE: To investigate the effects of EES on hippocampal apoptosis and caspase-3 expression, and to compare the effects on sodium valproate (positive control drug) in a rat model of status epilepticus induced by lithium chloride-pilocarpine. DESIGN, TIME AND SETTING: This randomized, controlled study was conducted at the Drug Research and Development Center, Kanghong Pharmaceuticals Group, and the Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, China from May 2007 to April 2008. MATERIALS: EES were prepared by Huashen Pharmaceutical, China. Sodium valproate (Hunan Xiangzhong Pharmaceutical, China) and lithium chloride-pilocarpine (Sigma, USA) were also used in the present study. METHODS: From a total of 156 rats, six served as normal controls. The remaining rats were intraperitoneally injected with lithium chloride-pilocarpine to establish status epileptlcus models, and then assigned to five groups (n = 30, respectively). Animals in each group were administered drugs at 15 minutes after epileptic seizure by gavage, i.e. in the normal control and model groups, rats were treated with 1 mL/0.1 kg saline. The sodium valproate group was administered 120 mg/kg/d sodium valproate. The low-, moderate-, and high-dose EES groups received treatments of 290, 580 and 1 160 mg/kg/d EES. The dispensed concentration was 1 mL/0.1 kg. Rat seizure behavior was observed. If status epilepticus did not terminated after 1 hour, the rats were intraperitoneally administered atropine (1 mg/kg) and diazepam (10 mg/kg) to terminate seizure. These rats were continuously observed for 6 hours to ensure seizure termination. Then rats were treated with the above-mentioned drugs at 8:00 am each day until sacrifice, which took place 4 hours after drug administration. MAIN OUTCOME MEASURES: Terminal dUTP nick end labeling (TUNEL)-positive cells and caspase-3 expression were, respectively, determined by TUNEL and immunohistochemistry at 6, 24 48, and 72 hours, as well as 7 days, after status epilepticus. Behavioral changes were also measured. RESULTS: A few caspase-3-positive cells were observed. TUNEL- and caspase-3-positive ceils were mainly visible in the hippocampal CA1 and CA3 regions 6 hours following status epilepticus in the model and drug intervention groups. The number of TUNEL-positive cells reached a peak at 48 hours following status epilepticus in the sodium valproate group, as well as the moderate- and high-dose EES groups, and number of TUNEL-positive cells reached a peak at 72 hours in the model and low-dose EES groups. The number of caspase-3-positive cells reached a peak at 48 hours in each group. Following treatment of sodium valproate and EES, the number of TUNEL- and caspase-3-positive cells significantly decreased compared with the model group at various time points (P 〈 0.05). The number of TUNEL- and caspase-3-positive cells was greatest in the low-dose EES group, followed by the moderate- and high-dose EES groups. The number of TUNEL- and caspase-3-positive cells was similar between the sodium valproate and high-dose EES groups. Epileptic seizure was significantly improved in the sodium valproate group, as well as the moderate- and high-dose EES groups, compared with the model group (P〈 0.05 or P〈 0.01). Treatment with sodium valproate and high-dose EES resulted in the best outcome, although the results were similar (P 〉 0.05). CONCLUSION: A dose of 1 160 mg/kg/d EES significantly inhibited status epilepticus. This outcome corresponded to a decreased number of apoptotlc cells and caspase-3-positive cells, which was similar to sodium valproate. These results suggest that it is not necessary to extract a component from the scorpion for the treatment of epilepsy. The high dose of EES significantly inhibited epilepsy, which correlated with decreased hippocampal caspase-3 expression.展开更多
文摘Soil frost heaving is a complex physical, mechanical, and chemical synthesis process. This paper summarizes the frost-heaving theory over half a century, including the capillary theory, the frozen-fringe theory, and those achievements recently made by scholars. In this paper, we also discus researching achievements of the soil-prediction model during the past 40 years, including the water-dynamics model, the rigid-ice model, the segregation-potential model, and the thermo-dynamic model. This summary and discussion will enable readers to understand the latest direction of research; it also summarizes the development of frost-heave prediction models and their advantages and shortcomings.
基金the National Natural Science Foundation of China,No.30740035the Tackle Key Program of Sichuan Province,No.05SG1672
文摘BACKGROUND: Previous studies have demonstrated that scorpion venom in the scorpion can inhibit epilepsy and apoptosis. However, it remains unclear whether ethanol extracts of scorpion (EES) exhibit similar effects. OBJECTIVE: To investigate the effects of EES on hippocampal apoptosis and caspase-3 expression, and to compare the effects on sodium valproate (positive control drug) in a rat model of status epilepticus induced by lithium chloride-pilocarpine. DESIGN, TIME AND SETTING: This randomized, controlled study was conducted at the Drug Research and Development Center, Kanghong Pharmaceuticals Group, and the Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, China from May 2007 to April 2008. MATERIALS: EES were prepared by Huashen Pharmaceutical, China. Sodium valproate (Hunan Xiangzhong Pharmaceutical, China) and lithium chloride-pilocarpine (Sigma, USA) were also used in the present study. METHODS: From a total of 156 rats, six served as normal controls. The remaining rats were intraperitoneally injected with lithium chloride-pilocarpine to establish status epileptlcus models, and then assigned to five groups (n = 30, respectively). Animals in each group were administered drugs at 15 minutes after epileptic seizure by gavage, i.e. in the normal control and model groups, rats were treated with 1 mL/0.1 kg saline. The sodium valproate group was administered 120 mg/kg/d sodium valproate. The low-, moderate-, and high-dose EES groups received treatments of 290, 580 and 1 160 mg/kg/d EES. The dispensed concentration was 1 mL/0.1 kg. Rat seizure behavior was observed. If status epilepticus did not terminated after 1 hour, the rats were intraperitoneally administered atropine (1 mg/kg) and diazepam (10 mg/kg) to terminate seizure. These rats were continuously observed for 6 hours to ensure seizure termination. Then rats were treated with the above-mentioned drugs at 8:00 am each day until sacrifice, which took place 4 hours after drug administration. MAIN OUTCOME MEASURES: Terminal dUTP nick end labeling (TUNEL)-positive cells and caspase-3 expression were, respectively, determined by TUNEL and immunohistochemistry at 6, 24 48, and 72 hours, as well as 7 days, after status epilepticus. Behavioral changes were also measured. RESULTS: A few caspase-3-positive cells were observed. TUNEL- and caspase-3-positive ceils were mainly visible in the hippocampal CA1 and CA3 regions 6 hours following status epilepticus in the model and drug intervention groups. The number of TUNEL-positive cells reached a peak at 48 hours following status epilepticus in the sodium valproate group, as well as the moderate- and high-dose EES groups, and number of TUNEL-positive cells reached a peak at 72 hours in the model and low-dose EES groups. The number of caspase-3-positive cells reached a peak at 48 hours in each group. Following treatment of sodium valproate and EES, the number of TUNEL- and caspase-3-positive cells significantly decreased compared with the model group at various time points (P 〈 0.05). The number of TUNEL- and caspase-3-positive cells was greatest in the low-dose EES group, followed by the moderate- and high-dose EES groups. The number of TUNEL- and caspase-3-positive cells was similar between the sodium valproate and high-dose EES groups. Epileptic seizure was significantly improved in the sodium valproate group, as well as the moderate- and high-dose EES groups, compared with the model group (P〈 0.05 or P〈 0.01). Treatment with sodium valproate and high-dose EES resulted in the best outcome, although the results were similar (P 〉 0.05). CONCLUSION: A dose of 1 160 mg/kg/d EES significantly inhibited status epilepticus. This outcome corresponded to a decreased number of apoptotlc cells and caspase-3-positive cells, which was similar to sodium valproate. These results suggest that it is not necessary to extract a component from the scorpion for the treatment of epilepsy. The high dose of EES significantly inhibited epilepsy, which correlated with decreased hippocampal caspase-3 expression.