It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a ne...It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells.展开更多
A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variable...A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.展开更多
目的探讨多种听力学检测方法在听性脑干反应(ABR)最大输出未引出患儿的听力学诊断中的应用价值。方法回顾性分析69例(138耳)ABR最大强度未引出患儿的临床资料,年龄42天到5岁,平均1岁6个月,鼓室导抗图均为A型或正向单峰,声反射均未引出,...目的探讨多种听力学检测方法在听性脑干反应(ABR)最大输出未引出患儿的听力学诊断中的应用价值。方法回顾性分析69例(138耳)ABR最大强度未引出患儿的临床资料,年龄42天到5岁,平均1岁6个月,鼓室导抗图均为A型或正向单峰,声反射均未引出,影像学检查内耳无畸形。69例患儿均进行ABR、耳蜗微音电位(CM)、畸变产物耳声发射(DPOAE)和听性稳态反应(ASSR)测试。结果69例138耳中,8例16耳(11.59%)记录到CM,其中10耳(7.25%)记录到DPOAE,0.5、1、2、4 kHz ASSR反应阈值分别为83.2±13.1、82.9±13.0、75.3±12.4、63.1±9.1 dB nHL,结合其他检查结果诊断为听神经病。余61例(122耳)CM和DPOAE均未引出,0.5、1、2、4 kHz的ASSR引出率分别为82.3%、81.9%、76.9%、60.2%,其中20耳ASSR各频率均未引出,102耳至少一个频率引出,0.5、1、2、4 kHz ASSR反应阈分别为93.2±6.1、99.8±7.0、105.4±5.4、108.2±9.8 dB nHL,诊断为极重度感音神经性聋。结论对于ABR最大输出强度未引出的患儿,CM和/或DPOAE引出且ASSR各频率反应阈低于感音神经性聋患儿,有助于听神经病的诊断;CM和DPOAE均未引出有助于极重度感音神经性聋的诊断,ASSR测试有助于评估其残余听力。展开更多
基金financial support from the Open Fund(PLN1003) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)the National Science and Technology Major Project in the l lth Five-Year Plan(Grant No.2008ZX05054)
文摘It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project (B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.
文摘目的探讨多种听力学检测方法在听性脑干反应(ABR)最大输出未引出患儿的听力学诊断中的应用价值。方法回顾性分析69例(138耳)ABR最大强度未引出患儿的临床资料,年龄42天到5岁,平均1岁6个月,鼓室导抗图均为A型或正向单峰,声反射均未引出,影像学检查内耳无畸形。69例患儿均进行ABR、耳蜗微音电位(CM)、畸变产物耳声发射(DPOAE)和听性稳态反应(ASSR)测试。结果69例138耳中,8例16耳(11.59%)记录到CM,其中10耳(7.25%)记录到DPOAE,0.5、1、2、4 kHz ASSR反应阈值分别为83.2±13.1、82.9±13.0、75.3±12.4、63.1±9.1 dB nHL,结合其他检查结果诊断为听神经病。余61例(122耳)CM和DPOAE均未引出,0.5、1、2、4 kHz的ASSR引出率分别为82.3%、81.9%、76.9%、60.2%,其中20耳ASSR各频率均未引出,102耳至少一个频率引出,0.5、1、2、4 kHz ASSR反应阈分别为93.2±6.1、99.8±7.0、105.4±5.4、108.2±9.8 dB nHL,诊断为极重度感音神经性聋。结论对于ABR最大输出强度未引出的患儿,CM和/或DPOAE引出且ASSR各频率反应阈低于感音神经性聋患儿,有助于听神经病的诊断;CM和DPOAE均未引出有助于极重度感音神经性聋的诊断,ASSR测试有助于评估其残余听力。