A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It ...A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas, ranging from low Z to high Z elements. The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision. Furthermore, the NLTE effects are investigated by virtue of the model, and the differences between CRSS and LTE models for low density plasmas are quite evident.展开更多
相关能量分析(correlation power analysis,CPA)是侧信道攻击中的经典有效方法之一,基于假设能量消耗与实际功耗的相关系数恢复密钥.在密码算法并行实现场景下,CPA“分而治之”的思想恢复密钥会导致低信噪比,有效信息无法被充分利用,大...相关能量分析(correlation power analysis,CPA)是侧信道攻击中的经典有效方法之一,基于假设能量消耗与实际功耗的相关系数恢复密钥.在密码算法并行实现场景下,CPA“分而治之”的思想恢复密钥会导致低信噪比,有效信息无法被充分利用,大大降低攻击效率.基于简单遗传算法的CPA借助遗传算法的启发式搜索特性,可以充分利用有效信息,提高攻击效率,但遗传算法存在固有缺点,容易早熟收敛,这种现象在S盒较大数量较多的场景下更严重.基于多种群遗传算法的CPA在单个种群恢复密钥失败时,保留最优个体,并继续新的单种群进化,得到的最优个体与前面保留的最优个体通过“组合”得到更优的个体,一定程度可以缓解早熟收敛的问题,本文中“原始方法”就是这种方法的代称.本文针对多个种群进化结束得到的优秀个体的结合方式进行探究,引入三种新的多种群优秀个体结合策略,分别是:小组赛、投票法和二次进化.小组赛将每两个优秀个体分成一组再“组合”.投票法以适应度为权重进行投票,使得适应度高的个体决策权更大.二次进化保留多个单种群进化结束得到的最优个体,构成初始种群,并以稳态遗传方式进行再次进化.以AES-128算法为例,通过不同噪声标准差下的仿真实验和真实实验将这三种方法与原始方法进行成功率和计算代价的比较,发现二次进化是其中效果最好的,在噪声标准差为3的实验中,二次进化方法在190条波形时密钥恢复成功率达到91%,计算代价0:63×10^(6),此时原始方法的成功率仅60%,计算代价1:60×10^(6).展开更多
基金supported by National Natural Science Foundation of China(No.10475065)
文摘A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas, ranging from low Z to high Z elements. The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision. Furthermore, the NLTE effects are investigated by virtue of the model, and the differences between CRSS and LTE models for low density plasmas are quite evident.
文摘相关能量分析(correlation power analysis,CPA)是侧信道攻击中的经典有效方法之一,基于假设能量消耗与实际功耗的相关系数恢复密钥.在密码算法并行实现场景下,CPA“分而治之”的思想恢复密钥会导致低信噪比,有效信息无法被充分利用,大大降低攻击效率.基于简单遗传算法的CPA借助遗传算法的启发式搜索特性,可以充分利用有效信息,提高攻击效率,但遗传算法存在固有缺点,容易早熟收敛,这种现象在S盒较大数量较多的场景下更严重.基于多种群遗传算法的CPA在单个种群恢复密钥失败时,保留最优个体,并继续新的单种群进化,得到的最优个体与前面保留的最优个体通过“组合”得到更优的个体,一定程度可以缓解早熟收敛的问题,本文中“原始方法”就是这种方法的代称.本文针对多个种群进化结束得到的优秀个体的结合方式进行探究,引入三种新的多种群优秀个体结合策略,分别是:小组赛、投票法和二次进化.小组赛将每两个优秀个体分成一组再“组合”.投票法以适应度为权重进行投票,使得适应度高的个体决策权更大.二次进化保留多个单种群进化结束得到的最优个体,构成初始种群,并以稳态遗传方式进行再次进化.以AES-128算法为例,通过不同噪声标准差下的仿真实验和真实实验将这三种方法与原始方法进行成功率和计算代价的比较,发现二次进化是其中效果最好的,在噪声标准差为3的实验中,二次进化方法在190条波形时密钥恢复成功率达到91%,计算代价0:63×10^(6),此时原始方法的成功率仅60%,计算代价1:60×10^(6).