The kinetics of internal oxidation of dilute Cu-Al alloys, containing 0.4475%-2.214%Al (mole fraction) was investigated over the temperature range of 1023-1273K and the depth of internal oxidation was measured...The kinetics of internal oxidation of dilute Cu-Al alloys, containing 0.4475%-2.214%Al (mole fraction) was investigated over the temperature range of 1023-1273K and the depth of internal oxidation was measured by microscopy. Based on non-steady-state diffusion, a rate equation is derived to describe the kinetics of internal oxidation of plate: X=k-t-, where X is the oxidation depth, t is the oxidation time. For the internal oxidation of Cu-Al alloys employed in the synthesis of alumina dispersion strengthened copper, the permeability of oxygen in solid copper is obtained from the internal oxidation measurements. Investigation shows that the depth of the internal oxidation is a parabolic function of time, the typical shape of the front of internal oxidation is of planar morphology, and there is no evidence for preferential diffusion along grain boundaries.展开更多
For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grid...For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.展开更多
In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through...In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.展开更多
In this paper, a numerical model is established. A modified N-S equation is used as a control equation for the wave field and porous flow area. The control equations are discreted and solved by the finite difference m...In this paper, a numerical model is established. A modified N-S equation is used as a control equation for the wave field and porous flow area. The control equations are discreted and solved by the finite difference method. The free surface is tracked by the VOF method. The pressure field and velocity field of the whole flow area are solved by the reiterative iteration method. Finally, compared with the physical model test results of wave flume, the numerical model established in the present study is validated.展开更多
A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a s...A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.展开更多
A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and...A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.展开更多
We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the...We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.展开更多
With a new approach,the general current expressions of two typical second order catalytic reactions at microelectrodes are obtained.This allows the study of fast chemical reactions and systems where the reactants are ...With a new approach,the general current expressions of two typical second order catalytic reactions at microelectrodes are obtained.This allows the study of fast chemical reactions and systems where the reactants are present in similar concentrations.展开更多
The steady state creep rate equdtion of a nickel base superalloy Inconel 718, strengthened by coherent ordered disc-shaped bct γ^(11) phase and coherent spherical fcc γ~1 phase precipitates, has been established in ...The steady state creep rate equdtion of a nickel base superalloy Inconel 718, strengthened by coherent ordered disc-shaped bct γ^(11) phase and coherent spherical fcc γ~1 phase precipitates, has been established in the stress and temperature ranges of 620-840 MN m^(-2) and 853-943K, respecti- vely. Constant stress tensile creep tests were used to medsure the values of steady state creep rate, ε_s, and the consecutive stress reduction method was used to measure the back stress during creep deformation. The values of effective stress exponent, n_e, were detemined from the slopes of the lgε_s vs. lg(σ_a-σ_0)/G plots. The effect of grain size, d, on steady state creep rdte has been also studied in this investigation, and the grain size sensitive exponents m were detemined from the slopes of lgε_s vs. lg(b/d) plots. The creep rate equations of Inconel 718, in the above stress and temperature ranges, have been proposed to be ε_s=1.6×10^(-5)(D_1Gb/KT) (b/d )^(0.19)[(σ_a-σ_0)/G]^(1.35) in diffusional creep region, and ε_s =75(D_1Gb/KT) (b/d)^(-0.42)[(σ_a-σ_0)/G]^(5.5) in dislocation power law creep region.展开更多
By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quant...By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quantity of stochastic entropy due to the deviation from the most probable path is related to the responsibility of a system to the external macroscopic perturbations. This evolution rate of the partial excess stochastic entropy is equivalent to the partlal excess stochastic entropy production, as well as the stochastic excess entropy production rate based on the stochastic potential npproach. It appears also as an eqivalent quantity of the Gibbs excess entropy production for the Polsson distribution. The macroscopic stability of chemical reaction systems is dominnted by this new stochastic quantity when the local equilibrium thermodynamics is broken down .展开更多
In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 bou...In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 boundary data.We have a non-existence result,which is the justification for taking into account the restricted boundary data.There is a smooth positive boundary datum that precludes the existence of the positive classical solution.展开更多
In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in ...In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.展开更多
A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced ...A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain.展开更多
In this note we investigate one-dimensional steady-state semicon-ductor devices. We proved the uniqueness of the solution to the unipolar de-vice problem with non-constant mobility.
Based on the theories of conventional electrodes, as well as the properties of microdisk electrode, the i-E equations for chronoamperometry at disk microelectrode for reversible, quasi-reversible and irreversible syst...Based on the theories of conventional electrodes, as well as the properties of microdisk electrode, the i-E equations for chronoamperometry at disk microelectrode for reversible, quasi-reversible and irreversible systems are derived. Steady-state voltammograms for the oxidation of [Fe(CN)6]4- , Fe2+ and ascorbic acid were measured at a series of microdisk electrodes with different radii. The conventional log-plot shows that oxidations of [Fe(CN)6]4- and ascorbic acid are reversible and totally irreversible, respectively, but the oxidation of Fe2+ is reversible at larger radius microdisk electrodes and quasi-reversible at smaller radius microdisk electrodes. The application of the log-plot to the voltammograms yielded a straight line, its slope allows us to evaluate the charge transfer coefficient and the intercept gives values of the electron transfer rate constant.展开更多
The coupled system of non-linear second-order reaction differential equation in basic enzyme reaction is formulated and closed analytical ex-pressions for substrate and product concentra-tions are presented. Approxima...The coupled system of non-linear second-order reaction differential equation in basic enzyme reaction is formulated and closed analytical ex-pressions for substrate and product concentra-tions are presented. Approximate analytical me-thod (He’s Homotopy perturbation method) is used to solve the coupled non-linear differential equations containing a non-linear term related to enzymatic reaction. Closed analytical expres-sions for substrate concentration, enzyme sub-strate concentration and product concentration have been derived in terms of dimensionless reaction diffusion parameters k, and us-ing perturbation method. These results are compared with simulation results and are found to be in good agreement. The obtained results are valid for the whole solution domain.展开更多
An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adap...An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adaptivity.The elements where the vorticity is larger than a pre-defined upper limit are refined,and those where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined.A high-order geometric approximation of curved boundaries is adopted to ensure the accuracy.Numerical results indicate that highly accurate numerical results can be obtained with the adaptive method at relatively low expense.展开更多
The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. T...The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. The new method was compared with theconventional differential quadrature method in the aspects of convergence and accuracy. The resultsshow that the new method is more accurate, and has better convergence than the conventionaldifferential quadrature method for numerically computing the steady-state solution.展开更多
文摘The kinetics of internal oxidation of dilute Cu-Al alloys, containing 0.4475%-2.214%Al (mole fraction) was investigated over the temperature range of 1023-1273K and the depth of internal oxidation was measured by microscopy. Based on non-steady-state diffusion, a rate equation is derived to describe the kinetics of internal oxidation of plate: X=k-t-, where X is the oxidation depth, t is the oxidation time. For the internal oxidation of Cu-Al alloys employed in the synthesis of alumina dispersion strengthened copper, the permeability of oxygen in solid copper is obtained from the internal oxidation measurements. Investigation shows that the depth of the internal oxidation is a parabolic function of time, the typical shape of the front of internal oxidation is of planar morphology, and there is no evidence for preferential diffusion along grain boundaries.
文摘For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.
文摘In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.
文摘In this paper, a numerical model is established. A modified N-S equation is used as a control equation for the wave field and porous flow area. The control equations are discreted and solved by the finite difference method. The free surface is tracked by the VOF method. The pressure field and velocity field of the whole flow area are solved by the reiterative iteration method. Finally, compared with the physical model test results of wave flume, the numerical model established in the present study is validated.
文摘A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.
文摘A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.
基金supported in part by the UK Engineering and Physical Sciences Research Council Award EP/E035027/1 and EP/L015811/1
文摘We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.
文摘With a new approach,the general current expressions of two typical second order catalytic reactions at microelectrodes are obtained.This allows the study of fast chemical reactions and systems where the reactants are present in similar concentrations.
文摘The steady state creep rate equdtion of a nickel base superalloy Inconel 718, strengthened by coherent ordered disc-shaped bct γ^(11) phase and coherent spherical fcc γ~1 phase precipitates, has been established in the stress and temperature ranges of 620-840 MN m^(-2) and 853-943K, respecti- vely. Constant stress tensile creep tests were used to medsure the values of steady state creep rate, ε_s, and the consecutive stress reduction method was used to measure the back stress during creep deformation. The values of effective stress exponent, n_e, were detemined from the slopes of the lgε_s vs. lg(σ_a-σ_0)/G plots. The effect of grain size, d, on steady state creep rdte has been also studied in this investigation, and the grain size sensitive exponents m were detemined from the slopes of lgε_s vs. lg(b/d) plots. The creep rate equations of Inconel 718, in the above stress and temperature ranges, have been proposed to be ε_s=1.6×10^(-5)(D_1Gb/KT) (b/d )^(0.19)[(σ_a-σ_0)/G]^(1.35) in diffusional creep region, and ε_s =75(D_1Gb/KT) (b/d)^(-0.42)[(σ_a-σ_0)/G]^(5.5) in dislocation power law creep region.
基金This research work is supported by the National Natural Science Foundation of China.
文摘By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quantity of stochastic entropy due to the deviation from the most probable path is related to the responsibility of a system to the external macroscopic perturbations. This evolution rate of the partial excess stochastic entropy is equivalent to the partlal excess stochastic entropy production, as well as the stochastic excess entropy production rate based on the stochastic potential npproach. It appears also as an eqivalent quantity of the Gibbs excess entropy production for the Polsson distribution. The macroscopic stability of chemical reaction systems is dominnted by this new stochastic quantity when the local equilibrium thermodynamics is broken down .
基金supported by the National NaturalScience Foundation of China(11971069 and 12126307)。
文摘In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 boundary data.We have a non-existence result,which is the justification for taking into account the restricted boundary data.There is a smooth positive boundary datum that precludes the existence of the positive classical solution.
基金the Scientific Research Fund of Beijing Normal University(Grant No.28704-111032105)the Start-up Research Fund from BNU-HKBU United International College(Grant No.R72021112)+2 种基金The research of Guanghui Hu was partially supported by the FDCT of the Macao S.A.R.(0082/2020/A2)the National Natural Science Foundation of China(Grant Nos.11922120,11871489)the Multi-Year Research Grant(2019-00154-FST)of University of Macao,and a Grant from Department of Science and Technology of Guangdong Province(2020B1212030001).
文摘In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.
文摘A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain.
文摘In this note we investigate one-dimensional steady-state semicon-ductor devices. We proved the uniqueness of the solution to the unipolar de-vice problem with non-constant mobility.
基金Supported by the National Natural Science Foundation of China Changchun Institute of Applied Chemistry of Chinese Academy of Sciences
文摘Based on the theories of conventional electrodes, as well as the properties of microdisk electrode, the i-E equations for chronoamperometry at disk microelectrode for reversible, quasi-reversible and irreversible systems are derived. Steady-state voltammograms for the oxidation of [Fe(CN)6]4- , Fe2+ and ascorbic acid were measured at a series of microdisk electrodes with different radii. The conventional log-plot shows that oxidations of [Fe(CN)6]4- and ascorbic acid are reversible and totally irreversible, respectively, but the oxidation of Fe2+ is reversible at larger radius microdisk electrodes and quasi-reversible at smaller radius microdisk electrodes. The application of the log-plot to the voltammograms yielded a straight line, its slope allows us to evaluate the charge transfer coefficient and the intercept gives values of the electron transfer rate constant.
文摘The coupled system of non-linear second-order reaction differential equation in basic enzyme reaction is formulated and closed analytical ex-pressions for substrate and product concentra-tions are presented. Approximate analytical me-thod (He’s Homotopy perturbation method) is used to solve the coupled non-linear differential equations containing a non-linear term related to enzymatic reaction. Closed analytical expres-sions for substrate concentration, enzyme sub-strate concentration and product concentration have been derived in terms of dimensionless reaction diffusion parameters k, and us-ing perturbation method. These results are compared with simulation results and are found to be in good agreement. The obtained results are valid for the whole solution domain.
基金supported by the National Natural Science Foundation of China(11272152)
文摘An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adaptivity.The elements where the vorticity is larger than a pre-defined upper limit are refined,and those where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined.A high-order geometric approximation of curved boundaries is adopted to ensure the accuracy.Numerical results indicate that highly accurate numerical results can be obtained with the adaptive method at relatively low expense.
文摘The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. The new method was compared with theconventional differential quadrature method in the aspects of convergence and accuracy. The resultsshow that the new method is more accurate, and has better convergence than the conventionaldifferential quadrature method for numerically computing the steady-state solution.