It is significant to research the voltage stability of the wind power centralized system (WPCS) for the effective development of the large scale clustering wind energy resources. A steady state voltage stability analy...It is significant to research the voltage stability of the wind power centralized system (WPCS) for the effective development of the large scale clustering wind energy resources. A steady state voltage stability analysis of the WPCS by employing the PV curve and model analysis is proposed to reveal the voltage stability influence from different aspects. The PV curve is utilized to trace and indicate the voltage collapse point of the WPCS when the small disturbance of wind power is increased gradually. Then the steady state voltage instability modes of the WPCS are analyzed by calculating the bus participation factors of the minimum eigenvalue model at the collapse point. The simulation results of an actual WPCS in North China show that the static state voltage instability mode of the WPCS is closely related to the operating features and control strategies of different reactive power sources. In addition, the implementation of the doubly-fed induction generator wind turbine generator voltage control is beneficial to improve the WPCS voltage stability.展开更多
In order to analyze power system stability in environment of WAMS(wide area measurement system),a new steady state stability model with time-varying delay was proposed for power system.The factors of exciter and power...In order to analyze power system stability in environment of WAMS(wide area measurement system),a new steady state stability model with time-varying delay was proposed for power system.The factors of exciter and power system stabilizer with delay were introduced into analytical model.To decrease conservativeness of stability analysis,an improved Lyapunov-Krasovskii functional was constructed,and then a new delay-dependent steady state stability criterion for power system,which overcomes the disadvantages of eigenvalue computation method,was derived.The proposed model and criterion were tested on synchronous-machine infinite-bus power system.The test results demonstrate that Lyapunov-Krasovskii functional based power system stability analysis method is applicable and effective in the analysis of time delay power system stability.展开更多
An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady sta...An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability.展开更多
A steady-state, rigid-plastic rolling problem for temperature and strain-rate dependent materials with nonlocal friction is considered. A variational formulation is derived, coupling a nonlinear variational inequality...A steady-state, rigid-plastic rolling problem for temperature and strain-rate dependent materials with nonlocal friction is considered. A variational formulation is derived, coupling a nonlinear variational inequality for the velocity and a nonlinear vari- ational equation for the temperature. The existence and uniqueness results are obtained by a proposed fixed point method.展开更多
In this paper modelling and analysis in autonomous mode of dual three-phase induction generator (DTPIG) with a new algorithm have been done. We develop the steady state model of a dual three-phase self-excited inducti...In this paper modelling and analysis in autonomous mode of dual three-phase induction generator (DTPIG) with a new algorithm have been done. We develop the steady state model of a dual three-phase self-excited induction generator for stand-alone renewable generation dispensing with the segregating real and imaginary components of the complex impedance of the induction generator. The obtained admittance yields the adequate magnetizing reactance and the frequency. These two key parameters are then used to compute the self-excitation process requirements in terms of the prime mover speed, the capacitance and the load impedance on the one hand and to predict the generator steady state performance parameters on the other. Steady state performances and characteristics of different configurations are clearly examined and compared. The analytical results are found to be in good agreement with experimental results.展开更多
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec...The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.展开更多
An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means...An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.展开更多
This paper presents a closed-form algorithm for the steady-state response of elastic mecha-nisms. Based on an analytic expression of the initial conditions, the steady-state response can beobtained by just one cycle o...This paper presents a closed-form algorithm for the steady-state response of elastic mecha-nisms. Based on an analytic expression of the initial conditions, the steady-state response can beobtained by just one cycle of integration, thus the algorithm is of high efficiency. The algorithm isthen verified by comparing the computational results with the previously published experimental re-sults.展开更多
A bifurcation analysis approach is developed based on the process simulator gPROMS platform, which can automatically trace a solution path, detect and pass the bifurcation points and check the stability of solutions. ...A bifurcation analysis approach is developed based on the process simulator gPROMS platform, which can automatically trace a solution path, detect and pass the bifurcation points and check the stability of solutions. The arclength continuation algorithm is incorporated as a process entity in gPROMS to overcome the limit of turning points and get multiple solutions with respect to a user-defined parameter. The bifurcation points are detected through a bifurcation test function τ which is written in C ++ routine as a foreign object connected with gPROMS through Foreign Process Interface. The stability analysis is realized by evaluating eigenvalues of the Jacobian matrix of each steady state solution. Two reference cases of an adiabatic CSTR and a homogenous azeotropic distillation from literature are studied, which successfully validate the reliability of the proposed approach. Besides the multiple steady states and Hopf bifurcation points, a more complex homoclinic bifurcation behavior is found for the distillation case compared to literature.展开更多
A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal i...A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal is used to update the step-size, leading to a considerably improved convergence rate in a low SNR situation and reduced steady-state bias and MSE. The theoretical expression for steady-state bounds on the step-size is derived, and the influence factors on the stable performance of the algorithm theoretically are analyzed. A normalized power factor is then introduced to control variation of step-size in its steady-state bounds. This technique prevents divergence due to the influence of large power input signal and improves robustness. Numerical experiments are performed to demonstrate superiority of the proposed method.展开更多
The market power mitigation method of the supply-side has become one of the key points affecting the stability of the electricity spot market.Different mitigation mechanisms are used in the current mature electricity ...The market power mitigation method of the supply-side has become one of the key points affecting the stability of the electricity spot market.Different mitigation mechanisms are used in the current mature electricity markets of the world.However,the same market power mitigation mechanism shows different effects in different market environments.Every market operator in the world needs the most efficient way to mitigate market power.Considering that there is no relevant literature discussing the market power effects of different mitigation methods in detail,the mitigation effects need to be discussed and further researched.So,we analyze the effects of the most utilized market power mitigation mechanisms while considering different market environments.Firstly,we establish a Nash-Stackelberg interactive game model to simulate the competitive strategies of power suppliers.Secondly,the different market power mitigation approaches are modeled.Then,a multi-agent system(MAS)genetic interior-point algorithm is proposed to solve the problem of suppliers.Finally,through the simulation analysis,the market power mitigation effects of different mechanisms while considering three operation states of the system in two market structures are all analyzed.展开更多
This paper proposes a steady-state errors correction(SSEC)method for eliminating measurement errors.This method is based on the detections of error signal E(s)and output C(s)which generate an expected output R(s).In c...This paper proposes a steady-state errors correction(SSEC)method for eliminating measurement errors.This method is based on the detections of error signal E(s)and output C(s)which generate an expected output R(s).In comparison with the conventional solutions which are based on detecting the expected output R(s)and output C(s)to obtain error signal E(s),the measurement errors are eliminated even the error might be at a significant level.Moreover,it is possible that the individual debugging by regulating the coefficient K for every member of the multiple objectives achieves the optimization of the open loop gain.Therefore,this simple method can be applied to the weak coupling and multiple objectives system,which is usually controlled by complex controller.The principle of eliminating measurement errors is derived analytically,and the advantages comparing with the conventional solutions are depicted.Based on the SSEC method analysis,an application of this method for an active power filter(APF)is investigated and the effectiveness and viability of the scheme are demonstrated through the simulation and experimental verifications.展开更多
In a power system, power generation and load have frequency response characteristics, which randomly fluctuate with changes in operating status. This study investigates a probabilistic power flow method that considers...In a power system, power generation and load have frequency response characteristics, which randomly fluctuate with changes in operating status. This study investigates a probabilistic power flow method that considers the unit and load uncertainty of the static frequency characteristic. Firstly, a calculation model is established on the basis of the characteristics of the frequency modulation performance of the unit and load. Then a calculation method is developed using the concept of dynamic power flow in order to determine the probability distribution of the active power flow of each line under the occurrence of a fault in the system. In the method, Monte Carlo sampling with the semi-invariant method is applied for analysis and calculation. The IEEE-30-buses system is taken as an example to analyze the impact of different responses of units on the power flow distribution of various branches. The method discussed herein is compared with the Monte Carlo simulation method to verify its effectiveness.展开更多
Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the ...Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the existing signal recognition methods for SSVEP do not fully pay attention to the important role of signal phase characteristics in the recognition process.Therefore,an improved method based on extended Canonical Correlation Analysis(eCCA)is proposed.The phase parameters are added from the stimulus paradigm encoded by joint frequency phase modulation to the reference signal constructed from the training data of the subjects to achieve phase constraints on eCCA,thereby improving the recognition performance of the eCCA method for SSVEP signals,and transmit the collected signals to the robotic arm system to achieve control of the robotic arm.In order to verify the effectiveness and advantages of the proposed method,this paper evaluated the method using SSVEP signals from 35 subjects.The research shows that the proposed algorithm improves the average recognition rate of SSVEP signals to 82.76%,and the information transmission rate to 116.18 bits/min,which is superior to TRCA and traditional eCAA-based methods in terms of information transmission speed and accuracy,and has better stability.展开更多
PHEVs (passenger plug-in hybrid electric vehicles) have shown significant fuel reduction potential. Furthermore, PHEVs can also improve longitudinal vehicle dynamics with respect to acceleration and engine elasticit...PHEVs (passenger plug-in hybrid electric vehicles) have shown significant fuel reduction potential. Furthermore, PHEVs can also improve longitudinal vehicle dynamics with respect to acceleration and engine elasticity. The objective of this study is to investigate potential of concurrent optimization of fuel efficiency and driving performance. For the studies, a backward vehicle model for a parallel PHEV was designed, where the power flow is calculated from the wheels to the propulsion units, the conventional ICE (internal combustion engine) and the EMG (electric motor/generator) unit. The hybrid drive train is according to a P2 layout, consequently the EMG is situated between the shifting clutch and the ICE. The implemented operation strategy distributes the power to both propulsion units depending on the vehicle speed, requested driving torque, the battery's SOC (state of charge) and SOP (state of power). Additional information, such as the slope of the road, can be taken into account by the operation strategy. In the paper, the fuel saving potential as well as the longitudinal dynamics change of different PHEV configurations is presented as a function of battery capacity and EMG power. Consequently, applicable hybrid components can be defined. By using additional information of the environment like various sensor data, road slope amongst others, the fuel saving potential can be improved even more. By studying the dynamic model, the overall results of the backward model are confirmed. In conclusion, this study shows that it is possible to concurrently reduce fuel consumption and increase driving performance in PHEVs. The potential depends strongly on the configuration of the electric components and the implemented operation strategy. Consequently, the hybrid system configuration has to be chosen carefully and aligned to the vehicle performance.展开更多
文摘It is significant to research the voltage stability of the wind power centralized system (WPCS) for the effective development of the large scale clustering wind energy resources. A steady state voltage stability analysis of the WPCS by employing the PV curve and model analysis is proposed to reveal the voltage stability influence from different aspects. The PV curve is utilized to trace and indicate the voltage collapse point of the WPCS when the small disturbance of wind power is increased gradually. Then the steady state voltage instability modes of the WPCS are analyzed by calculating the bus participation factors of the minimum eigenvalue model at the collapse point. The simulation results of an actual WPCS in North China show that the static state voltage instability mode of the WPCS is closely related to the operating features and control strategies of different reactive power sources. In addition, the implementation of the doubly-fed induction generator wind turbine generator voltage control is beneficial to improve the WPCS voltage stability.
基金Projects(60425310,60974026) supported by the National Natural Science Foundation of ChinaProject(200805330004) supported by the Doctor Subject Foundation of China+1 种基金Projects(NCET-06-0679) supported by Program for New Century Excellent Talents in UniversityProject(08JJ1010) supported by the Natural Science Foundation of Hunan Province,China
文摘In order to analyze power system stability in environment of WAMS(wide area measurement system),a new steady state stability model with time-varying delay was proposed for power system.The factors of exciter and power system stabilizer with delay were introduced into analytical model.To decrease conservativeness of stability analysis,an improved Lyapunov-Krasovskii functional was constructed,and then a new delay-dependent steady state stability criterion for power system,which overcomes the disadvantages of eigenvalue computation method,was derived.The proposed model and criterion were tested on synchronous-machine infinite-bus power system.The test results demonstrate that Lyapunov-Krasovskii functional based power system stability analysis method is applicable and effective in the analysis of time delay power system stability.
文摘An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability.
文摘A steady-state, rigid-plastic rolling problem for temperature and strain-rate dependent materials with nonlocal friction is considered. A variational formulation is derived, coupling a nonlinear variational inequality for the velocity and a nonlinear vari- ational equation for the temperature. The existence and uniqueness results are obtained by a proposed fixed point method.
文摘In this paper modelling and analysis in autonomous mode of dual three-phase induction generator (DTPIG) with a new algorithm have been done. We develop the steady state model of a dual three-phase self-excited induction generator for stand-alone renewable generation dispensing with the segregating real and imaginary components of the complex impedance of the induction generator. The obtained admittance yields the adequate magnetizing reactance and the frequency. These two key parameters are then used to compute the self-excitation process requirements in terms of the prime mover speed, the capacitance and the load impedance on the one hand and to predict the generator steady state performance parameters on the other. Steady state performances and characteristics of different configurations are clearly examined and compared. The analytical results are found to be in good agreement with experimental results.
文摘The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.
文摘An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.
文摘This paper presents a closed-form algorithm for the steady-state response of elastic mecha-nisms. Based on an analytic expression of the initial conditions, the steady-state response can beobtained by just one cycle of integration, thus the algorithm is of high efficiency. The algorithm isthen verified by comparing the computational results with the previously published experimental re-sults.
基金Supported by the National Natural Science Foundation of China(21576081)Major State Basic Research Development Program of China(2012CB720502)111 Project(B08021)
文摘A bifurcation analysis approach is developed based on the process simulator gPROMS platform, which can automatically trace a solution path, detect and pass the bifurcation points and check the stability of solutions. The arclength continuation algorithm is incorporated as a process entity in gPROMS to overcome the limit of turning points and get multiple solutions with respect to a user-defined parameter. The bifurcation points are detected through a bifurcation test function τ which is written in C ++ routine as a foreign object connected with gPROMS through Foreign Process Interface. The stability analysis is realized by evaluating eigenvalues of the Jacobian matrix of each steady state solution. Two reference cases of an adiabatic CSTR and a homogenous azeotropic distillation from literature are studied, which successfully validate the reliability of the proposed approach. Besides the multiple steady states and Hopf bifurcation points, a more complex homoclinic bifurcation behavior is found for the distillation case compared to literature.
文摘A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal is used to update the step-size, leading to a considerably improved convergence rate in a low SNR situation and reduced steady-state bias and MSE. The theoretical expression for steady-state bounds on the step-size is derived, and the influence factors on the stable performance of the algorithm theoretically are analyzed. A normalized power factor is then introduced to control variation of step-size in its steady-state bounds. This technique prevents divergence due to the influence of large power input signal and improves robustness. Numerical experiments are performed to demonstrate superiority of the proposed method.
基金This work is supported by the Science and Technology Project of State Grid Corporation of China (Provincial power spot market and power grid dispatching and operation joint deduction technology research and system development).
文摘The market power mitigation method of the supply-side has become one of the key points affecting the stability of the electricity spot market.Different mitigation mechanisms are used in the current mature electricity markets of the world.However,the same market power mitigation mechanism shows different effects in different market environments.Every market operator in the world needs the most efficient way to mitigate market power.Considering that there is no relevant literature discussing the market power effects of different mitigation methods in detail,the mitigation effects need to be discussed and further researched.So,we analyze the effects of the most utilized market power mitigation mechanisms while considering different market environments.Firstly,we establish a Nash-Stackelberg interactive game model to simulate the competitive strategies of power suppliers.Secondly,the different market power mitigation approaches are modeled.Then,a multi-agent system(MAS)genetic interior-point algorithm is proposed to solve the problem of suppliers.Finally,through the simulation analysis,the market power mitigation effects of different mechanisms while considering three operation states of the system in two market structures are all analyzed.
基金National Natural Science Foundation of China(No.61273172)
文摘This paper proposes a steady-state errors correction(SSEC)method for eliminating measurement errors.This method is based on the detections of error signal E(s)and output C(s)which generate an expected output R(s).In comparison with the conventional solutions which are based on detecting the expected output R(s)and output C(s)to obtain error signal E(s),the measurement errors are eliminated even the error might be at a significant level.Moreover,it is possible that the individual debugging by regulating the coefficient K for every member of the multiple objectives achieves the optimization of the open loop gain.Therefore,this simple method can be applied to the weak coupling and multiple objectives system,which is usually controlled by complex controller.The principle of eliminating measurement errors is derived analytically,and the advantages comparing with the conventional solutions are depicted.Based on the SSEC method analysis,an application of this method for an active power filter(APF)is investigated and the effectiveness and viability of the scheme are demonstrated through the simulation and experimental verifications.
基金Supported by the State Grid Scientific and Technological Project (Title: Research on Control Strategy with Fast Demand Response to Severe Power Shortage, SGJS0000DKJS1700263)
文摘In a power system, power generation and load have frequency response characteristics, which randomly fluctuate with changes in operating status. This study investigates a probabilistic power flow method that considers the unit and load uncertainty of the static frequency characteristic. Firstly, a calculation model is established on the basis of the characteristics of the frequency modulation performance of the unit and load. Then a calculation method is developed using the concept of dynamic power flow in order to determine the probability distribution of the active power flow of each line under the occurrence of a fault in the system. In the method, Monte Carlo sampling with the semi-invariant method is applied for analysis and calculation. The IEEE-30-buses system is taken as an example to analyze the impact of different responses of units on the power flow distribution of various branches. The method discussed herein is compared with the Monte Carlo simulation method to verify its effectiveness.
文摘Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the existing signal recognition methods for SSVEP do not fully pay attention to the important role of signal phase characteristics in the recognition process.Therefore,an improved method based on extended Canonical Correlation Analysis(eCCA)is proposed.The phase parameters are added from the stimulus paradigm encoded by joint frequency phase modulation to the reference signal constructed from the training data of the subjects to achieve phase constraints on eCCA,thereby improving the recognition performance of the eCCA method for SSVEP signals,and transmit the collected signals to the robotic arm system to achieve control of the robotic arm.In order to verify the effectiveness and advantages of the proposed method,this paper evaluated the method using SSVEP signals from 35 subjects.The research shows that the proposed algorithm improves the average recognition rate of SSVEP signals to 82.76%,and the information transmission rate to 116.18 bits/min,which is superior to TRCA and traditional eCAA-based methods in terms of information transmission speed and accuracy,and has better stability.
文摘PHEVs (passenger plug-in hybrid electric vehicles) have shown significant fuel reduction potential. Furthermore, PHEVs can also improve longitudinal vehicle dynamics with respect to acceleration and engine elasticity. The objective of this study is to investigate potential of concurrent optimization of fuel efficiency and driving performance. For the studies, a backward vehicle model for a parallel PHEV was designed, where the power flow is calculated from the wheels to the propulsion units, the conventional ICE (internal combustion engine) and the EMG (electric motor/generator) unit. The hybrid drive train is according to a P2 layout, consequently the EMG is situated between the shifting clutch and the ICE. The implemented operation strategy distributes the power to both propulsion units depending on the vehicle speed, requested driving torque, the battery's SOC (state of charge) and SOP (state of power). Additional information, such as the slope of the road, can be taken into account by the operation strategy. In the paper, the fuel saving potential as well as the longitudinal dynamics change of different PHEV configurations is presented as a function of battery capacity and EMG power. Consequently, applicable hybrid components can be defined. By using additional information of the environment like various sensor data, road slope amongst others, the fuel saving potential can be improved even more. By studying the dynamic model, the overall results of the backward model are confirmed. In conclusion, this study shows that it is possible to concurrently reduce fuel consumption and increase driving performance in PHEVs. The potential depends strongly on the configuration of the electric components and the implemented operation strategy. Consequently, the hybrid system configuration has to be chosen carefully and aligned to the vehicle performance.