To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
An eco-epidemiological model with an epidemic in the predator and with a Holling type Ⅱ function is considered.A system with diffusion under the homogeneous Neumann boundary condition is studied.The existence for a p...An eco-epidemiological model with an epidemic in the predator and with a Holling type Ⅱ function is considered.A system with diffusion under the homogeneous Neumann boundary condition is studied.The existence for a positive solution of the corresponding steady state problem is mainly discussed.First,a prior estimates(positive upper and lower bounds) of the positive steady states of the reaction-diffusion system is given by the maximum principle and the Harnack inequation.Then,the non-existence of non-constant positive steady states by using the energy method is given.Finally,the existence of non-constant positive steady states is obtained by using the topological degree.展开更多
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to...1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].展开更多
A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron cur...A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron current density and electron temperature, coupled with the Poisson equation of the electrostatic potential in a bounded interval supplemented with proper boundary conditions. The existence and uniqueness of a strong subsonic steady-state solution with positive particle density and positive temperature is established. The proof is based on the fixed-point arguments, the Stampacchia truncation methods, and the basic energy estimates.展开更多
In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through...In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.展开更多
This study investigates the application of the two-parameter Weibull distribution in modeling state holding times within HIV/AIDS progression dynamics. By comparing the performance of the Weibull-based Accelerated Fai...This study investigates the application of the two-parameter Weibull distribution in modeling state holding times within HIV/AIDS progression dynamics. By comparing the performance of the Weibull-based Accelerated Failure Time (AFT) model, Cox Proportional Hazards model, and Survival model, we assess the effectiveness of these models in capturing survival rates across varying gender, age groups, and treatment categories. Simulated data was used to fit the models, with model identification criteria (AIC, BIC, and R2) applied for evaluation. Results indicate that the AFT model is particularly sensitive to interaction terms, showing significant effects for older age groups (50 - 60 years) and treatment interaction, while the Cox model provides a more stable fit across all age groups. The Survival model displayed variability, with its performance diminishing when interaction terms were introduced, particularly in older age groups. Overall, while the AFT model captures the complexities of interactions in the data, the Cox model’s stability suggests it may be better suited for general analyses without strong interaction effects. The findings highlight the importance of model selection in survival analysis, especially in complex disease progression scenarios like HIV/AIDS.展开更多
In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model wa...In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.展开更多
A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It ...A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas, ranging from low Z to high Z elements. The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision. Furthermore, the NLTE effects are investigated by virtue of the model, and the differences between CRSS and LTE models for low density plasmas are quite evident.展开更多
Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentrati...Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentration and temperature profiles.The operation of these attractive reactors is,however,inherently unsteady state,complicating the design and operation of such sorption-enhanced processes.In order to capture,comprehend and capitalize upon the rich dynamic texture of adsorptive reactors,it is necessary to employ cyclic steady state algorithms describing the entire reaction-adsorption/desorption cycle.The stability of this cyclic steady state is of great importance for the design and operation of adsorptive reactors.In this paper,the cyclic steady state of previously proposed novel adsorptive reactor designs has been calculated and then optimized to give maximum space–time yields.The results obtained revealed unambiguously that an improvement potential of up to multifold level could be attained under the optimized cyclic steady state conditions.This additional improvement resulted from the reduction of the regeneration time well below the reaction-adsorption time,which means,in turn,more space–time yield.展开更多
<span style="font-family:Verdana;">The increase of energy production is very important nowadays. It is necessary to improve the performance and efficiency of heat production facilities. The objective i...<span style="font-family:Verdana;">The increase of energy production is very important nowadays. It is necessary to improve the performance and efficiency of heat production facilities. The objective is to reduce pollutant emissions and regulate investment costs. One </span><span style="font-family:Verdana;">of the </span><span style="font-family:Verdana;">solution</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is to control fuel and electricity consumption. </span><span style="font-family:Verdana;">This article develops a new model of simulation heat diffusion on the recovery system of condensing boiler. The method is based on the first and second thermodynamic systems. The Numerical discrete Model (NDM) was applied using MATLAB to simulate different characteristics of heat transfer in the recovery system. The result shows that the recovery unit can absorb the following temperatures;the range from 88°C to 90.7°C when the length of the tube is between respectively 110 and 111 m. the energy efficiency was between 0.55 and 0.57 which allowed confirming the model. This new model has some advantages such as;the use of an instantaneous calculation time. The heat recovered by the water tank can also serve as preheating different systems. One part of the heat recovered will be accumulated to be used as domestic hot water.</span>展开更多
A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering use...A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two.展开更多
The remaining useful life(RUL) prediction of mechanical products has been widely studied for online system performance reliability, device remanufacturing, and product safety(safety awareness and safety improvement). ...The remaining useful life(RUL) prediction of mechanical products has been widely studied for online system performance reliability, device remanufacturing, and product safety(safety awareness and safety improvement). These studies incorporated many di erent models, algorithms, and techniques for modeling and assessment. In this paper, methods of RUL assessment are summarized and expounded upon using two major methods: physics model based and data driven based methods. The advantages and disadvantages of each of these methods are deliberated and compared as well. Due to the intricacy of failure mechanism in system, and di culty in physics degradation observation, RUL assessment based on observations of performance variables turns into a science in evaluating the degradation. A modeling method from control systems, the state space model(SSM), as a first order hidden Markov, is presented. In the context of non-linear and non-Gaussian systems, the SSM methodology is capable of performing remaining life assessment by using Bayesian estimation(sequential Monte Carlo). Being e ective for non-linear and non-Gaussian dynamics, the methodology can perform the assessment recursively online for applications in CBM(condition based maintenance), PHM(prognostics and health management), remanufacturing, and system performance reliability. Finally, the discussion raises concerns regarding online sensing data for SSM modeling and assessment of RUL.展开更多
Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variabl...Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.展开更多
Based on the pioneering work of Konishi et al., in consideration of the influence of drivers' steady desired speed ef/ect on the traffic flow, we develop a new coupled map car-following model in the real world. By us...Based on the pioneering work of Konishi et al., in consideration of the influence of drivers' steady desired speed ef/ect on the traffic flow, we develop a new coupled map car-following model in the real world. By use of the control theory, the stability condition of our model is derived. The validity of the present theoretical scheme is verified via numerical simulation, confirming the correctness of our theoretical analysis.展开更多
In this article, one kind of multiple steady states(MSS) phenomenon was investigated for a dividing wall column(DWC). The four-section model constructed in Aspen Plus was employed to simulate two DWC cases: mixture of...In this article, one kind of multiple steady states(MSS) phenomenon was investigated for a dividing wall column(DWC). The four-section model constructed in Aspen Plus was employed to simulate two DWC cases: mixture of n-hexane, n-heptane and n-octane;system of methanol, ethanol and n-propanol. It can be seen that there is a range of vapor split ratio in which multiple solutions of reflux ratio exist for fixed DWC configuration with the same feed and product streams. The width and the curve shapes of the MSS region, and the number of solutions change with the liquid split ratio. This MSS phenomenon was further explained using the component recovery around the prefractionator and the component recycling flow inside the DWC. This MSS phenomenon is helpful for DWC design by knowing the probable existence of multiple solutions in advance.展开更多
This paper is prepared in honour of Professor E.T.Brown for his outstanding contributions to rock mechanics and geotechnical engineering and also for his personal influence on the first author’s research career in ge...This paper is prepared in honour of Professor E.T.Brown for his outstanding contributions to rock mechanics and geotechnical engineering and also for his personal influence on the first author’s research career in geomechanics and geotechnical engineering.As a result,we have picked a topic that reflects two key research areas in which Professor E.T.Brown has made seminal contributions over a long and distinguished career.These two areas are concerned with the application of the critical state concept to modelling geomaterials and the analysis of underground excavation or tunnelling in geomaterials.Partially due to Professor Brown’s influence,the first author has also been conducting research in these two areas over many years.In particular,this paper aims to describe briefly the development of a unified critical state model for geomaterials together with an application to cavity contraction problems and tunnelling in soils.展开更多
A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existingmodel for saturated clays originally proposed by the authors. The saturated clays model was formulatedin the framework o...A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existingmodel for saturated clays originally proposed by the authors. The saturated clays model was formulatedin the framework of critical state soil mechanics and modified Cam-clay model. The existing model hasbeen generalized to simulate the experimentally observed behavior of unsaturated clays by introducingBishop's stress and suction as independent stress parameters and modifying the hardening rule and yieldcriterion to take into account the role of suction. Also, according to previous studies, an increase intemperature causes a reduction in specific volume. A reduction in suction (wetting) for a given confiningstress may induce an irreversible volumetric compression (collapse). Thus an increase in suction (drying)raises a specific volume i.e. the movement of normal consolidation line (NCL) to higher values of voidratio. However, some experimental data confirm the assumption that this reduction is dependent on thestress level of soil element. A generalized approach considering the effect of stress level on themagnitude of clays thermal dependency in compression plane is proposed in this study. The number ofmodeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitatethe usefulness of model for practical applications. A step-by-step procedure used for parameter calibrationis also described. The model is finally evaluated using a comprehensive set of experimental datafor the thermo-mechanical behavior of unsaturated soils.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
A new thermodynamic model for gas hydrates was established by combining the modified Patel-Teja equation of state proposed for aqueous electrolyte systems and the simplified Holder -John multi -shell hydrate model. Th...A new thermodynamic model for gas hydrates was established by combining the modified Patel-Teja equation of state proposed for aqueous electrolyte systems and the simplified Holder -John multi -shell hydrate model. The new hydrate model is capable of predicting the hydrate formation/dissociation conditions of natural gas systems containing pure water/formation water (brine) and polar inhibitor without using activity coefficient model. Extensive test results indicate very encouraging results.展开更多
In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by...In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey. By the bifurcation method, the degree theory, and a priori estimates, we discuss the existence and multiplicity of positive steady states. Moreover, by the comparison argument, we also discuss the dynamical behavior for the diffusive predator-prey system.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金The National Natural Science Foundation of China (No.10601011)
文摘An eco-epidemiological model with an epidemic in the predator and with a Holling type Ⅱ function is considered.A system with diffusion under the homogeneous Neumann boundary condition is studied.The existence for a positive solution of the corresponding steady state problem is mainly discussed.First,a prior estimates(positive upper and lower bounds) of the positive steady states of the reaction-diffusion system is given by the maximum principle and the Harnack inequation.Then,the non-existence of non-constant positive steady states by using the energy method is given.Finally,the existence of non-constant positive steady states is obtained by using the topological degree.
文摘1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].
基金the Educational Department of Hubei province(Q200628002)the National Science Foundation of China(10701057)
文摘A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron current density and electron temperature, coupled with the Poisson equation of the electrostatic potential in a bounded interval supplemented with proper boundary conditions. The existence and uniqueness of a strong subsonic steady-state solution with positive particle density and positive temperature is established. The proof is based on the fixed-point arguments, the Stampacchia truncation methods, and the basic energy estimates.
文摘In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.
文摘This study investigates the application of the two-parameter Weibull distribution in modeling state holding times within HIV/AIDS progression dynamics. By comparing the performance of the Weibull-based Accelerated Failure Time (AFT) model, Cox Proportional Hazards model, and Survival model, we assess the effectiveness of these models in capturing survival rates across varying gender, age groups, and treatment categories. Simulated data was used to fit the models, with model identification criteria (AIC, BIC, and R2) applied for evaluation. Results indicate that the AFT model is particularly sensitive to interaction terms, showing significant effects for older age groups (50 - 60 years) and treatment interaction, while the Cox model provides a more stable fit across all age groups. The Survival model displayed variability, with its performance diminishing when interaction terms were introduced, particularly in older age groups. Overall, while the AFT model captures the complexities of interactions in the data, the Cox model’s stability suggests it may be better suited for general analyses without strong interaction effects. The findings highlight the importance of model selection in survival analysis, especially in complex disease progression scenarios like HIV/AIDS.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51276012)
文摘In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.
基金supported by National Natural Science Foundation of China(No.10475065)
文摘A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas, ranging from low Z to high Z elements. The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision. Furthermore, the NLTE effects are investigated by virtue of the model, and the differences between CRSS and LTE models for low density plasmas are quite evident.
基金the German research council(Deutsche Forschungsgemeinschaft) for their financial support to the project:AG 26/18-1
文摘Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentration and temperature profiles.The operation of these attractive reactors is,however,inherently unsteady state,complicating the design and operation of such sorption-enhanced processes.In order to capture,comprehend and capitalize upon the rich dynamic texture of adsorptive reactors,it is necessary to employ cyclic steady state algorithms describing the entire reaction-adsorption/desorption cycle.The stability of this cyclic steady state is of great importance for the design and operation of adsorptive reactors.In this paper,the cyclic steady state of previously proposed novel adsorptive reactor designs has been calculated and then optimized to give maximum space–time yields.The results obtained revealed unambiguously that an improvement potential of up to multifold level could be attained under the optimized cyclic steady state conditions.This additional improvement resulted from the reduction of the regeneration time well below the reaction-adsorption time,which means,in turn,more space–time yield.
文摘<span style="font-family:Verdana;">The increase of energy production is very important nowadays. It is necessary to improve the performance and efficiency of heat production facilities. The objective is to reduce pollutant emissions and regulate investment costs. One </span><span style="font-family:Verdana;">of the </span><span style="font-family:Verdana;">solution</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is to control fuel and electricity consumption. </span><span style="font-family:Verdana;">This article develops a new model of simulation heat diffusion on the recovery system of condensing boiler. The method is based on the first and second thermodynamic systems. The Numerical discrete Model (NDM) was applied using MATLAB to simulate different characteristics of heat transfer in the recovery system. The result shows that the recovery unit can absorb the following temperatures;the range from 88°C to 90.7°C when the length of the tube is between respectively 110 and 111 m. the energy efficiency was between 0.55 and 0.57 which allowed confirming the model. This new model has some advantages such as;the use of an instantaneous calculation time. The heat recovered by the water tank can also serve as preheating different systems. One part of the heat recovered will be accumulated to be used as domestic hot water.</span>
文摘A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant No.DUT17GF214)
文摘The remaining useful life(RUL) prediction of mechanical products has been widely studied for online system performance reliability, device remanufacturing, and product safety(safety awareness and safety improvement). These studies incorporated many di erent models, algorithms, and techniques for modeling and assessment. In this paper, methods of RUL assessment are summarized and expounded upon using two major methods: physics model based and data driven based methods. The advantages and disadvantages of each of these methods are deliberated and compared as well. Due to the intricacy of failure mechanism in system, and di culty in physics degradation observation, RUL assessment based on observations of performance variables turns into a science in evaluating the degradation. A modeling method from control systems, the state space model(SSM), as a first order hidden Markov, is presented. In the context of non-linear and non-Gaussian systems, the SSM methodology is capable of performing remaining life assessment by using Bayesian estimation(sequential Monte Carlo). Being e ective for non-linear and non-Gaussian dynamics, the methodology can perform the assessment recursively online for applications in CBM(condition based maintenance), PHM(prognostics and health management), remanufacturing, and system performance reliability. Finally, the discussion raises concerns regarding online sensing data for SSM modeling and assessment of RUL.
基金supported by the National High-tech R&D Program of China(863 Program)(2015AA7326042 2015AA8321471)
文摘Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.
基金Project supported by the Major Consulting Project of Chinese Academy of Engineering(Grant No.2012-ZX-22)the National Natural Science Foundation of China(Grant No.71201178)+3 种基金the Natural Science Foundation of Chongqing City,China(Grant No.cstc2012jjB40002)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120191110047)the Engineering Center Research Program of Chongqing City,China(Grant No.cstc2011pt-gc30005)the Key Technology R&D Project of Chongqing City,China(Grant Nos.cstc2011AB2052 and cstc2012gg-yyjsB30001)
文摘Based on the pioneering work of Konishi et al., in consideration of the influence of drivers' steady desired speed ef/ect on the traffic flow, we develop a new coupled map car-following model in the real world. By use of the control theory, the stability condition of our model is derived. The validity of the present theoretical scheme is verified via numerical simulation, confirming the correctness of our theoretical analysis.
基金Supported by the National Natural Science Foundation of China(21376240)
文摘In this article, one kind of multiple steady states(MSS) phenomenon was investigated for a dividing wall column(DWC). The four-section model constructed in Aspen Plus was employed to simulate two DWC cases: mixture of n-hexane, n-heptane and n-octane;system of methanol, ethanol and n-propanol. It can be seen that there is a range of vapor split ratio in which multiple solutions of reflux ratio exist for fixed DWC configuration with the same feed and product streams. The width and the curve shapes of the MSS region, and the number of solutions change with the liquid split ratio. This MSS phenomenon was further explained using the component recovery around the prefractionator and the component recycling flow inside the DWC. This MSS phenomenon is helpful for DWC design by knowing the probable existence of multiple solutions in advance.
文摘This paper is prepared in honour of Professor E.T.Brown for his outstanding contributions to rock mechanics and geotechnical engineering and also for his personal influence on the first author’s research career in geomechanics and geotechnical engineering.As a result,we have picked a topic that reflects two key research areas in which Professor E.T.Brown has made seminal contributions over a long and distinguished career.These two areas are concerned with the application of the critical state concept to modelling geomaterials and the analysis of underground excavation or tunnelling in geomaterials.Partially due to Professor Brown’s influence,the first author has also been conducting research in these two areas over many years.In particular,this paper aims to describe briefly the development of a unified critical state model for geomaterials together with an application to cavity contraction problems and tunnelling in soils.
文摘A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existingmodel for saturated clays originally proposed by the authors. The saturated clays model was formulatedin the framework of critical state soil mechanics and modified Cam-clay model. The existing model hasbeen generalized to simulate the experimentally observed behavior of unsaturated clays by introducingBishop's stress and suction as independent stress parameters and modifying the hardening rule and yieldcriterion to take into account the role of suction. Also, according to previous studies, an increase intemperature causes a reduction in specific volume. A reduction in suction (wetting) for a given confiningstress may induce an irreversible volumetric compression (collapse). Thus an increase in suction (drying)raises a specific volume i.e. the movement of normal consolidation line (NCL) to higher values of voidratio. However, some experimental data confirm the assumption that this reduction is dependent on thestress level of soil element. A generalized approach considering the effect of stress level on themagnitude of clays thermal dependency in compression plane is proposed in this study. The number ofmodeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitatethe usefulness of model for practical applications. A step-by-step procedure used for parameter calibrationis also described. The model is finally evaluated using a comprehensive set of experimental datafor the thermo-mechanical behavior of unsaturated soils.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘A new thermodynamic model for gas hydrates was established by combining the modified Patel-Teja equation of state proposed for aqueous electrolyte systems and the simplified Holder -John multi -shell hydrate model. The new hydrate model is capable of predicting the hydrate formation/dissociation conditions of natural gas systems containing pure water/formation water (brine) and polar inhibitor without using activity coefficient model. Extensive test results indicate very encouraging results.
基金supported by the National Natural Science Foundation of China(11361053,11201204,11471148,11471330,145RJZA112)
文摘In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey. By the bifurcation method, the degree theory, and a priori estimates, we discuss the existence and multiplicity of positive steady states. Moreover, by the comparison argument, we also discuss the dynamical behavior for the diffusive predator-prey system.