From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship betw...From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.展开更多
The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc...The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.展开更多
In the absorption chamber of a high-energy laser energy meter, water is directly used as an absorbing medium and the interaction of the high-power laser and the water flow can produce a variety of physical phenomena s...In the absorption chamber of a high-energy laser energy meter, water is directly used as an absorbing medium and the interaction of the high-power laser and the water flow can produce a variety of physical phenomena such as phase transitions. The unit difference method is adopted to deduce the phase transition model for water flow irradiated by a high-energy laser. In addition, the model is simulated and verified through experiments. Among them, the experimental verification uses the photographic method, shooting the distribution and the form of the air mass of water flow in different operating conditions, which are compared with the simulation results. The research shows that it is achievable to reduce the intensity of the phase transition by increasing the water flow, reducing the power intensity of the beam, shortening the distance the beam covers, reducing the initial water temperature or adopting a shorter wavelength laser. The study's results will provide the reference for the design of a water-direct-absorption-type high-energy laser energy meter as well as an analysis of the interaction processes of other similar high-power lasers and water flow.展开更多
This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flow...This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a system can be described as a conditionally linear system. The sensitivity is measured using the maximum transient energy growth, which is widely used in the fluid dynamics community. The paper considers two approaches. In the first approach, the MoI is used to design low-order proportional and proportional-integral (PI) controllers. In the second one, the MoI is combined with McFarlane and Glover's H∞ loop-shaping design procedure in a mixed-optimization approach.展开更多
Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under th...Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under the assumptions of the small curvature ratio and the Reynolds number.The results indicate that the curvature of the microtube leads to a skewed pattern in the distribution of the electrical double layer(EDL)potential.The EDL potential at the outer side of the bend is larger than that at the inner side of the bend.The curvature shows an inhibitory effect on the magnitude of the streaming potential field induced by the pressure-driven flow.Since the spanwise pressure gradient is dominant over the inertial force,the resulting axial velocity profile is skewed into the inner region of the curved channel.Furthermore,the flow rate in a curved microtube could be larger than that in a straight one with the same pressure gradient and shape of cross section.The asymptotic solutions of the axial velocity and flow rate in the absence of the electrokinetic effect are in agreement with the classical results for low Reynolds number flows.Remarkably,the curved geometry could be beneficial to improving the electrokinetic energy conversion(EKEC)efficiency.展开更多
It is the first time that the world’s first new method of farming,the"Fenlong farming technology,"has been systematically clarified,and the"Fenlong body integrating with natural science"has been c...It is the first time that the world’s first new method of farming,the"Fenlong farming technology,"has been systematically clarified,and the"Fenlong body integrating with natural science"has been created in terms of land resource activation,natural fertilization,natural water management,natural ecological improvement(including climate),and natural indirect activation of river water resources.Moreover,the"theory of Fenlong energy"has been established based on its effectiveness.The"theory of Fenlong energy"originates from the"multiplying and incremental utilization of three-dimensional spatial resources"in production practice.Its application to more than 40 kinds of crops such as rice,corn and wheat in 26 provinces including Guangxi,Xinjiang and Tibet shows that:the yield of arable land increases by 20%to 50%(the quality is improved by 5%),the yield of saline land increases by 20%to 100%,and it can retain 100%of water and resist or ease the disaster.The"theory of three-dimensional spatial resources","Fenlong science","Fenlong law"are the theoretical base for the establishment of the"theory of Fenlong energy".Based on the phenomena that the Fenlong crops have particularly developed root systems,white and more fibrous roots,and tall plants,it is proposed for the first time that Fenlong farming breaks the confinement of the bottom layer of the plow and realizes the holographic penetration of material,energy,and information flows,and there may be the speculation of"Fenlong dark matter flow".展开更多
区域综合能源系统(regional integrated energy system,RIES)的最优能流计算是求解RIES的设备配置、优化调度、故障分析等问题的基础。考虑供冷/热和供气管道传输能量的动态特性,建立RIES动态最优能流计算模型,其中基于特征线法获得了供...区域综合能源系统(regional integrated energy system,RIES)的最优能流计算是求解RIES的设备配置、优化调度、故障分析等问题的基础。考虑供冷/热和供气管道传输能量的动态特性,建立RIES动态最优能流计算模型,其中基于特征线法获得了供冷/热管道和供气管道动态偏微分方程的代数解析解。针对基于供冷/热系统质–量调节模式下管道能量传输时滞变量造成RIES的动态能流计算模型难以求解的问题,提出采用分段插值法获得供冷/热管道两端节点温度之间关系的近似表达式并加入动态最优能流计算模型中。此外,针对优化模型中供冷/热系统的流量与温度相乘的双线性项,提出一种能够缩紧松弛间隙的分段凸包络松弛方法将原混合整数非线性优化模型转化为混合整数二次约束规划模型,能够在保证计算精度的同时实现高效求解。最后以某个RIES算例进行分析,验证了所提方法的计算准确性和高效性,并与常用的质调节模式相比,表明在供冷/热系统质–量调节模式下能找到经济性更优的RIES运行点。展开更多
文章采用FLOW-3D软件,通过RNGk-ε模型和volume of fluid(VOF)方法相结合,实现了竖井水平旋流泄洪洞水力特性的三维水流流场数值模拟;对开敞式进水口轴线与旋流洞轴线交角不同时起旋室的压强分布、旋流角和紊动能等水力特性进行了对比...文章采用FLOW-3D软件,通过RNGk-ε模型和volume of fluid(VOF)方法相结合,实现了竖井水平旋流泄洪洞水力特性的三维水流流场数值模拟;对开敞式进水口轴线与旋流洞轴线交角不同时起旋室的压强分布、旋流角和紊动能等水力特性进行了对比分析研究,数值模拟能够客观地反映起旋室旋流的流场特性,成果可为旋流溢洪道的研究应用提供参考.展开更多
基金Item Sponsored by National Basic Research Programof China (200002600)
文摘From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.
基金supported by the National Natural Science Foundation of China(21627813)。
文摘The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.
文摘In the absorption chamber of a high-energy laser energy meter, water is directly used as an absorbing medium and the interaction of the high-power laser and the water flow can produce a variety of physical phenomena such as phase transitions. The unit difference method is adopted to deduce the phase transition model for water flow irradiated by a high-energy laser. In addition, the model is simulated and verified through experiments. Among them, the experimental verification uses the photographic method, shooting the distribution and the form of the air mass of water flow in different operating conditions, which are compared with the simulation results. The research shows that it is achievable to reduce the intensity of the phase transition by increasing the water flow, reducing the power intensity of the beam, shortening the distance the beam covers, reducing the initial water temperature or adopting a shorter wavelength laser. The study's results will provide the reference for the design of a water-direct-absorption-type high-energy laser energy meter as well as an analysis of the interaction processes of other similar high-power lasers and water flow.
文摘This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a system can be described as a conditionally linear system. The sensitivity is measured using the maximum transient energy growth, which is widely used in the fluid dynamics community. The paper considers two approaches. In the first approach, the MoI is used to design low-order proportional and proportional-integral (PI) controllers. In the second one, the MoI is combined with McFarlane and Glover's H∞ loop-shaping design procedure in a mixed-optimization approach.
基金Project supported by the National Natural Science Foundation of China(Nos.11902165 and 11772162)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2019BS01004)the Inner Mongolia Grassland Talent of China(No.12000-12102408)。
文摘Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under the assumptions of the small curvature ratio and the Reynolds number.The results indicate that the curvature of the microtube leads to a skewed pattern in the distribution of the electrical double layer(EDL)potential.The EDL potential at the outer side of the bend is larger than that at the inner side of the bend.The curvature shows an inhibitory effect on the magnitude of the streaming potential field induced by the pressure-driven flow.Since the spanwise pressure gradient is dominant over the inertial force,the resulting axial velocity profile is skewed into the inner region of the curved channel.Furthermore,the flow rate in a curved microtube could be larger than that in a straight one with the same pressure gradient and shape of cross section.The asymptotic solutions of the axial velocity and flow rate in the absence of the electrokinetic effect are in agreement with the classical results for low Reynolds number flows.Remarkably,the curved geometry could be beneficial to improving the electrokinetic energy conversion(EKEC)efficiency.
基金Supported by Special Fund Project of Guangxi Innovation Driven Development(Guike AA17204037,Guike 2020AA05002AA)Major Science and Technology Projects in Guangxi(Guike AA16380017)Team Project of Guangxi Academy of Agricultural Sciences(2015YT60)。
文摘It is the first time that the world’s first new method of farming,the"Fenlong farming technology,"has been systematically clarified,and the"Fenlong body integrating with natural science"has been created in terms of land resource activation,natural fertilization,natural water management,natural ecological improvement(including climate),and natural indirect activation of river water resources.Moreover,the"theory of Fenlong energy"has been established based on its effectiveness.The"theory of Fenlong energy"originates from the"multiplying and incremental utilization of three-dimensional spatial resources"in production practice.Its application to more than 40 kinds of crops such as rice,corn and wheat in 26 provinces including Guangxi,Xinjiang and Tibet shows that:the yield of arable land increases by 20%to 50%(the quality is improved by 5%),the yield of saline land increases by 20%to 100%,and it can retain 100%of water and resist or ease the disaster.The"theory of three-dimensional spatial resources","Fenlong science","Fenlong law"are the theoretical base for the establishment of the"theory of Fenlong energy".Based on the phenomena that the Fenlong crops have particularly developed root systems,white and more fibrous roots,and tall plants,it is proposed for the first time that Fenlong farming breaks the confinement of the bottom layer of the plow and realizes the holographic penetration of material,energy,and information flows,and there may be the speculation of"Fenlong dark matter flow".
文摘区域综合能源系统(regional integrated energy system,RIES)的最优能流计算是求解RIES的设备配置、优化调度、故障分析等问题的基础。考虑供冷/热和供气管道传输能量的动态特性,建立RIES动态最优能流计算模型,其中基于特征线法获得了供冷/热管道和供气管道动态偏微分方程的代数解析解。针对基于供冷/热系统质–量调节模式下管道能量传输时滞变量造成RIES的动态能流计算模型难以求解的问题,提出采用分段插值法获得供冷/热管道两端节点温度之间关系的近似表达式并加入动态最优能流计算模型中。此外,针对优化模型中供冷/热系统的流量与温度相乘的双线性项,提出一种能够缩紧松弛间隙的分段凸包络松弛方法将原混合整数非线性优化模型转化为混合整数二次约束规划模型,能够在保证计算精度的同时实现高效求解。最后以某个RIES算例进行分析,验证了所提方法的计算准确性和高效性,并与常用的质调节模式相比,表明在供冷/热系统质–量调节模式下能找到经济性更优的RIES运行点。
文摘文章采用FLOW-3D软件,通过RNGk-ε模型和volume of fluid(VOF)方法相结合,实现了竖井水平旋流泄洪洞水力特性的三维水流流场数值模拟;对开敞式进水口轴线与旋流洞轴线交角不同时起旋室的压强分布、旋流角和紊动能等水力特性进行了对比分析研究,数值模拟能够客观地反映起旋室旋流的流场特性,成果可为旋流溢洪道的研究应用提供参考.