In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the...In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the to- tal nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods,this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia,nitrate,and total nitrogen in the effluent.To verify the simulation results,pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results,which proved the validity of the developed model. The sensitivity of the model predictions was analyzed.After verification of the validity,the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period,the effluent total nitrogen concentrations were all below 5mg·L -1 ,with more than 90%removal efficiency.展开更多
A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron cur...A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron current density and electron temperature, coupled with the Poisson equation of the electrostatic potential in a bounded interval supplemented with proper boundary conditions. The existence and uniqueness of a strong subsonic steady-state solution with positive particle density and positive temperature is established. The proof is based on the fixed-point arguments, the Stampacchia truncation methods, and the basic energy estimates.展开更多
<span style="font-family:Verdana;">The increase of energy production is very important nowadays. It is necessary to improve the performance and efficiency of heat production facilities. The objective i...<span style="font-family:Verdana;">The increase of energy production is very important nowadays. It is necessary to improve the performance and efficiency of heat production facilities. The objective is to reduce pollutant emissions and regulate investment costs. One </span><span style="font-family:Verdana;">of the </span><span style="font-family:Verdana;">solution</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is to control fuel and electricity consumption. </span><span style="font-family:Verdana;">This article develops a new model of simulation heat diffusion on the recovery system of condensing boiler. The method is based on the first and second thermodynamic systems. The Numerical discrete Model (NDM) was applied using MATLAB to simulate different characteristics of heat transfer in the recovery system. The result shows that the recovery unit can absorb the following temperatures;the range from 88°C to 90.7°C when the length of the tube is between respectively 110 and 111 m. the energy efficiency was between 0.55 and 0.57 which allowed confirming the model. This new model has some advantages such as;the use of an instantaneous calculation time. The heat recovered by the water tank can also serve as preheating different systems. One part of the heat recovered will be accumulated to be used as domestic hot water.</span>展开更多
Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsucc...Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsuccessful.Methods:Here,we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints.Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells,and then the expanded cells were applied to establish humanized mice.The human immune system was evaluated according to the kinetics of dendritic cells,monocytes,T-cell subsets,and cytokines.To fully stimulate the immune response and to obtain B-cell precursor NAML-6-and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells,we used the inactivated cells above to treat humanized mice twice a day every 7 days.Then,human T cells were processed for TCRβ-chain(TRB)sequencing analysis.After the repertoires had been constructed,features such as the fraction,diversity,and immune signature were investigated.Results:The results demonstrated an increase in diversity and clonality of T cells after treatment.The preferential usage and features of TRBV,TRBJ,and the V–J combination were also changed.The stress also induced highly clonal Science and Technology,Grant/Award Number:2021C03010;Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004 expansion.Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice.Conclusions:We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools.Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells.It therefore has the potential to greatly benefit cancer treatment.展开更多
A systematic approach for the steady-state operation analysis of chemical processes is pro-posed.The method affords the possibility of taking operation resilience into consideration during thestage of process design.I...A systematic approach for the steady-state operation analysis of chemical processes is pro-posed.The method affords the possibility of taking operation resilience into consideration during thestage of process design.It may serve the designer as an efficient means for the initial screening ofalternative design schemes.An ideal heat integrated distillation column(HIDiC),without any reboileror condenser attached,is studied throughout this work.It has been found that among the various va-riables concerned with the ideal HIDiC,feed thermal condition appears to be the only factor exertingsignificant influences on the interaction between the top and the bottom control loops.Maximuminteraction is expected when the feed thermal condition approaches 0.5.Total number of stages andheat transfer rate are essential to the system ability of disturbance rejection.Therefore,more stagesand higher heat transfer rate ought to be preferred.But,too many stages and higher heat transfer ratemay increase the load of the展开更多
The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers t...The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers to provide robust stability,tracking of the proposed linear dynamics,an adequate set of proportional-integral-derivative(PID)controller gains,and a minimal cost function.The PID control and linear quadratic regulator(LQR)with or without full-state-observer were evaluated.An optimal control system is assumed to provide fast rise and settling time,minimize overshoot,and eliminate the steady-state error.The effectiveness of this approach was verified by a linear model of the UAV aircraft in the semi-dynamic simulation platform of Matlab/Simulink,in which the open-loop system was assessed in terms of flight robustness and reference tracking.The experimental results show that the proposed controllers effectively improve the configuration of the control system of the plant,maintain the sustainability of the dynamic flight model stability,and diminish the flight controller errors.The LQR provides robust stability,but it is not optimal in the transient phase of particular plant output.The PID control system can adjust the controller’s gains for optimal hovering(or stable slow flight)and is especially useful for the tracking system.Finally,comparing aircraft stability using PID and LQR controllers shows that the latter has less overshoot and a shorter settling time;in addition,all proposed controllers can be practically deployed as one UAV’s system,which can be handled as an exemplary model of the UAV flight management system.展开更多
In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gau...In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.展开更多
The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that...The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that in GHR model vehicle is allowed to run arbitrarily close together if their speed are identical,and it waves aside even though the separation is larger than its desired distance. Based on these investigations, a modified GHR model which features a new nonlinear term which attempts to adjust the inter-vehicle spacing to a certain desired value was proposed accordingly to overcome these deficiencies. In addition, the analysis of the additive nonlinear term and steady-state flow of the new model were studied to prove its rationality.展开更多
Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process...Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process that triggers and controls the CPFF are extremely important for the exploration of new mineral deposits and underground oil resources. From the viewpoint of science, the CPFF within the upper crust can be treated as a kind of thermodynamic instability problem of pore-fluid in fluid-saturated porous media. The key issue of dealing with this kind of problem is to assess whether a nonlinear thermodynamic system under consideration is supercritical. To overcome limitations of using theoretical analysis and experimental methods in dealing with the CPFF problems within the upper crust, finite element modeling has been broadly employed for solving this kind of problem over the past two decades. The main purpose of this paper is to overview recent developments and applications of finite element modeling associated with solving the CPFF problems in large length-scale geological systems of complicated geometries and complex material distributions. In particular, two kinds of commonly-used finite element modeling approaches, namely the steady-state and transient-state approaches, and their advantages/disadvantages are thoroughly presented and discussed.展开更多
Increasing population growth and water demand for various purposes such as irrigation, domestic and industrial production in many parts of the Kurdistan Region is causing deficit in fresh water and rising groundwater ...Increasing population growth and water demand for various purposes such as irrigation, domestic and industrial production in many parts of the Kurdistan Region is causing deficit in fresh water and rising groundwater dependence. Drilling many deep wells in the area unsystematically and continuously increased pumping water from groundwater reservoirs results in lowering of water table. Therefore, it is essential to assess the management of water resources. The study focuses on the groundwater modeling for the Qushtapa District plain area in particular under steady state flow conditions. The aquifer was simulated under unconfined condition and is represented by a single layer of 100 m thickness. MODPATH was used to measure contamination track lines and travel times. This approach involved the introduction of particles at sources of contaminants in the wells and the recharge area, then the identification of the path lines and the determination of the special distribution of contaminants through steady state flow conditions. The simulation of the groundwater head shows that the groundwater head starts from the northeastern part of the plain and decreases towards Lesser Zab River in the south of the plain from 420 m to 140 m above sea level. The modeled layer was calibrated under steady state conditions using hydraulic parameters obtained from observation and pumping wells. The calibrated model is effective in producing steady-state groundwater head distribution and good compliance with observed data. The standard error was estimated as 4.88 m, the normalized root mean square error is 8.3% and the residual mean is 15.79 m. The results of the forward tracking show the source of potential pollutants from the recharge area after different travel time, the particles released at the northern boundary travels to the center and the western part toward the pollution sources. The results of the backward tracking show that the particles located in the extraction wells moved toward the recharge area in the north and northeastern part of the study area.展开更多
Combined with the tire dynamics theoretical model,a rapid test method to obtain tire lateral and longitudinal both steady-state and transient characteristics only based on the tire quasi-steady-state test results is p...Combined with the tire dynamics theoretical model,a rapid test method to obtain tire lateral and longitudinal both steady-state and transient characteristics only based on the tire quasi-steady-state test results is proposed.For steady state data extraction,the test time of the rapid test method is half that of the conventional test method.For transient tire characteristics the rapid test method omits the traditional tire test totally.At the mean time the accuracy of the two method is much closed.The rapid test method is explained theoretically and the test process is designed.The key parameters of tire are extracted and the comparison is made between rapid test and traditional test method.The result show that the identification accuracy based on the rapid test method is almost equal to the accuracy of the conventional one.Then,the heat generated during the rapid test method and that generated during the conventional test are calculated separately.The comparison shows that the heat generated during the rapid test is much smaller than the heat generated during the conventional test process.This benefits to the reduction of tire wear and the consistency of test results.Finally,it can be concluded that the fast test method can efficiently,accurately and energy-efficiently measure the steady-state and transient characteristics of the tire.展开更多
By means of composite quantum collision models,we study the entanglement dynamics of a bipartite system,i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA,while SA is in turn couple...By means of composite quantum collision models,we study the entanglement dynamics of a bipartite system,i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA,while SA is in turn coupled to a thermal reservoir.We are concerned with how the intracollisions of the reservoir qubits influence the entanglement dynamics.We show that even if the system is initially in the separated state,their entanglement can be generated due to the interaction between the qubits.In the long-time limit,the steady-state entanglement can be generated depending on the initial state of S1 and S2 and the environment temperature.We also study the dynamics of tripartite entanglement of the three qubits S1,S2,and SA when they are initially prepared in the GHZ state and separated state,respectively.For the GHZ initial state,the tripartite entanglement can be maintained for a long time when the collision strength between the environment qubits is sufficiently large.展开更多
The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved....The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved. The nonlinear equations governing the transverse vibration are derived from the dynamical, constitutive, and geometrical relations. The method of multiple scales is used to determine the steady-state response. The modulation equation is derived from the solvability condition of eliminating secular terms. Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation. The stability of non- trivial steady-state response is examined via the Routh-Hurwitz criterion.展开更多
The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What...The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What's more,based on degree error RMS of potential coefficients,the detailed expressions of spectral combination formulae and the corresponding spectral weights in the Earth's gravitational field model(EGM) determination using GOCE + GRACE and CHAMP + GRACE + GOCE are derived.The fundamental situation that ulux-champ2013 s,tongji-GRACE01,go-cons-gcf-2-tim-r5 constructed respectively by CHAMP,GRACE,GOCE data and go-cons-gcf-2-dir-r5 constructed by syncretic processing of GRACE,GOCE and LAGEOS data are explained briefly,the degree error RMS,cumulative geoid height error and cumulative gravity anomaly error of these models are calculated.A syncretic model constructed from CHAMP,GRACE and GOCE data,which is expressed by champ + grace + goce,is obtained based on spectral combination method.Experimentation results show that the precision of CHAMP data model is the lowest in satellite-only models,so it is not needed in the determination of syncretic models.The GRACE data model can improve the GOCE data model in medium-long wavelength,so the overall precision of syncretic model can be improved.Consequently,as many types of gravimetric data as possible should be combined together in the data processing in order to strengthen the quality and reliability with widening scope and improve the precision and spatial resolution of the computational results.展开更多
The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding stead...The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem. The local and global stability of the positive constant steady-state are discussed, and then some results for non- existence of positive non-constant steady-states are derived.展开更多
In this paper, the authors deal with the non-constant positive steady-states of a predator-prey-mutualist model with homogeneous Neumann boundary condition. They first give a priori estimates (positive upper and lower...In this paper, the authors deal with the non-constant positive steady-states of a predator-prey-mutualist model with homogeneous Neumann boundary condition. They first give a priori estimates (positive upper and lower bounds) of positive steady-states,and then study the non-existence, the global existence and bifurcation of non-constant positive steady-states as some parameters are varied. Finally the asymptotic behavior of such solutions as d3 →∞ is discussed.展开更多
This study explored methods for improving the performance of Steady-State Visual Evoked Potential(SSVEP)-based Brain-Computer Interfaces(BCI), and introduced a new analytical method to quantitatively analyze and refle...This study explored methods for improving the performance of Steady-State Visual Evoked Potential(SSVEP)-based Brain-Computer Interfaces(BCI), and introduced a new analytical method to quantitatively analyze and reflect the characteristics of SSVEP. We focused on the effect of the pre-stimulation paradigm on the SSVEP dynamic models and the dynamic response process of SSVEP, and performed a comparative analysis of three pre-stimulus paradigms(black, gray, and white). Four dynamic models with different orders(second-and third-order)and with and without a zero point were used to fit the SSVEP envelope. The zero-pole analytical method was adopted to conduct quantitative analysis on the dynamic models, and the response characteristics of SSVEP were represented by zero-pole distribution characteristics. The results of this study indicated that the pre-stimulation paradigm affects the characteristics of SSVEP, and the dynamic models had good fitting abilities with SSVEPs under various types of pre-stimulation. Furthermore, the zero-pole characteristics of the models effectively characterize the damping coefficient, oscillation period, and other SSVEP characteristics. The comparison of zeros and poles indicated that the gray pre-stimulation condition corresponds to a lower damping coefficient, thus showing its potential to improve the performance of SSVEP-BCIs.展开更多
基金Supported by the National Natural Science Foundation Key International Cooperation Project of China (No.50521140075), the 863 Attached Financial Supporting Item of Beijing Municipal Science and Technology Commission (No.Z0005186040421) and the Doctor Subject Soecial Financial Supporfing Item of High College (No.20060005002).
文摘In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the to- tal nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods,this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia,nitrate,and total nitrogen in the effluent.To verify the simulation results,pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results,which proved the validity of the developed model. The sensitivity of the model predictions was analyzed.After verification of the validity,the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period,the effluent total nitrogen concentrations were all below 5mg·L -1 ,with more than 90%removal efficiency.
基金the Educational Department of Hubei province(Q200628002)the National Science Foundation of China(10701057)
文摘A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron current density and electron temperature, coupled with the Poisson equation of the electrostatic potential in a bounded interval supplemented with proper boundary conditions. The existence and uniqueness of a strong subsonic steady-state solution with positive particle density and positive temperature is established. The proof is based on the fixed-point arguments, the Stampacchia truncation methods, and the basic energy estimates.
文摘<span style="font-family:Verdana;">The increase of energy production is very important nowadays. It is necessary to improve the performance and efficiency of heat production facilities. The objective is to reduce pollutant emissions and regulate investment costs. One </span><span style="font-family:Verdana;">of the </span><span style="font-family:Verdana;">solution</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is to control fuel and electricity consumption. </span><span style="font-family:Verdana;">This article develops a new model of simulation heat diffusion on the recovery system of condensing boiler. The method is based on the first and second thermodynamic systems. The Numerical discrete Model (NDM) was applied using MATLAB to simulate different characteristics of heat transfer in the recovery system. The result shows that the recovery unit can absorb the following temperatures;the range from 88°C to 90.7°C when the length of the tube is between respectively 110 and 111 m. the energy efficiency was between 0.55 and 0.57 which allowed confirming the model. This new model has some advantages such as;the use of an instantaneous calculation time. The heat recovered by the water tank can also serve as preheating different systems. One part of the heat recovered will be accumulated to be used as domestic hot water.</span>
基金National Natural Science Foundation of China,Grant/Award Numbers:82130003,81970158,82000180Zhejiang Provincial Key R&D Projects of Department of Science and Technology,Grant/Award Number:2021C03010Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004。
文摘Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsuccessful.Methods:Here,we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints.Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells,and then the expanded cells were applied to establish humanized mice.The human immune system was evaluated according to the kinetics of dendritic cells,monocytes,T-cell subsets,and cytokines.To fully stimulate the immune response and to obtain B-cell precursor NAML-6-and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells,we used the inactivated cells above to treat humanized mice twice a day every 7 days.Then,human T cells were processed for TCRβ-chain(TRB)sequencing analysis.After the repertoires had been constructed,features such as the fraction,diversity,and immune signature were investigated.Results:The results demonstrated an increase in diversity and clonality of T cells after treatment.The preferential usage and features of TRBV,TRBJ,and the V–J combination were also changed.The stress also induced highly clonal Science and Technology,Grant/Award Number:2021C03010;Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004 expansion.Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice.Conclusions:We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools.Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells.It therefore has the potential to greatly benefit cancer treatment.
文摘A systematic approach for the steady-state operation analysis of chemical processes is pro-posed.The method affords the possibility of taking operation resilience into consideration during thestage of process design.It may serve the designer as an efficient means for the initial screening ofalternative design schemes.An ideal heat integrated distillation column(HIDiC),without any reboileror condenser attached,is studied throughout this work.It has been found that among the various va-riables concerned with the ideal HIDiC,feed thermal condition appears to be the only factor exertingsignificant influences on the interaction between the top and the bottom control loops.Maximuminteraction is expected when the feed thermal condition approaches 0.5.Total number of stages andheat transfer rate are essential to the system ability of disturbance rejection.Therefore,more stagesand higher heat transfer rate ought to be preferred.But,too many stages and higher heat transfer ratemay increase the load of the
文摘The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers to provide robust stability,tracking of the proposed linear dynamics,an adequate set of proportional-integral-derivative(PID)controller gains,and a minimal cost function.The PID control and linear quadratic regulator(LQR)with or without full-state-observer were evaluated.An optimal control system is assumed to provide fast rise and settling time,minimize overshoot,and eliminate the steady-state error.The effectiveness of this approach was verified by a linear model of the UAV aircraft in the semi-dynamic simulation platform of Matlab/Simulink,in which the open-loop system was assessed in terms of flight robustness and reference tracking.The experimental results show that the proposed controllers effectively improve the configuration of the control system of the plant,maintain the sustainability of the dynamic flight model stability,and diminish the flight controller errors.The LQR provides robust stability,but it is not optimal in the transient phase of particular plant output.The PID control system can adjust the controller’s gains for optimal hovering(or stable slow flight)and is especially useful for the tracking system.Finally,comparing aircraft stability using PID and LQR controllers shows that the latter has less overshoot and a shorter settling time;in addition,all proposed controllers can be practically deployed as one UAV’s system,which can be handled as an exemplary model of the UAV flight management system.
基金Supported by the National Creative Research Groups Science Foundation of China (60421002) and National Basic Research Program of China (2007CB714000).
文摘In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.
基金Key Foundation Project of Shanghai (No.032912066)
文摘The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that in GHR model vehicle is allowed to run arbitrarily close together if their speed are identical,and it waves aside even though the separation is larger than its desired distance. Based on these investigations, a modified GHR model which features a new nonlinear term which attempts to adjust the inter-vehicle spacing to a certain desired value was proposed accordingly to overcome these deficiencies. In addition, the analysis of the additive nonlinear term and steady-state flow of the new model were studied to prove its rationality.
基金Project(11272359)supported by the National Natural Science Foundation of China
文摘Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process that triggers and controls the CPFF are extremely important for the exploration of new mineral deposits and underground oil resources. From the viewpoint of science, the CPFF within the upper crust can be treated as a kind of thermodynamic instability problem of pore-fluid in fluid-saturated porous media. The key issue of dealing with this kind of problem is to assess whether a nonlinear thermodynamic system under consideration is supercritical. To overcome limitations of using theoretical analysis and experimental methods in dealing with the CPFF problems within the upper crust, finite element modeling has been broadly employed for solving this kind of problem over the past two decades. The main purpose of this paper is to overview recent developments and applications of finite element modeling associated with solving the CPFF problems in large length-scale geological systems of complicated geometries and complex material distributions. In particular, two kinds of commonly-used finite element modeling approaches, namely the steady-state and transient-state approaches, and their advantages/disadvantages are thoroughly presented and discussed.
文摘Increasing population growth and water demand for various purposes such as irrigation, domestic and industrial production in many parts of the Kurdistan Region is causing deficit in fresh water and rising groundwater dependence. Drilling many deep wells in the area unsystematically and continuously increased pumping water from groundwater reservoirs results in lowering of water table. Therefore, it is essential to assess the management of water resources. The study focuses on the groundwater modeling for the Qushtapa District plain area in particular under steady state flow conditions. The aquifer was simulated under unconfined condition and is represented by a single layer of 100 m thickness. MODPATH was used to measure contamination track lines and travel times. This approach involved the introduction of particles at sources of contaminants in the wells and the recharge area, then the identification of the path lines and the determination of the special distribution of contaminants through steady state flow conditions. The simulation of the groundwater head shows that the groundwater head starts from the northeastern part of the plain and decreases towards Lesser Zab River in the south of the plain from 420 m to 140 m above sea level. The modeled layer was calibrated under steady state conditions using hydraulic parameters obtained from observation and pumping wells. The calibrated model is effective in producing steady-state groundwater head distribution and good compliance with observed data. The standard error was estimated as 4.88 m, the normalized root mean square error is 8.3% and the residual mean is 15.79 m. The results of the forward tracking show the source of potential pollutants from the recharge area after different travel time, the particles released at the northern boundary travels to the center and the western part toward the pollution sources. The results of the backward tracking show that the particles located in the extraction wells moved toward the recharge area in the north and northeastern part of the study area.
基金Supported by National Natural Science Foundation of China(Grant No.51775224).
文摘Combined with the tire dynamics theoretical model,a rapid test method to obtain tire lateral and longitudinal both steady-state and transient characteristics only based on the tire quasi-steady-state test results is proposed.For steady state data extraction,the test time of the rapid test method is half that of the conventional test method.For transient tire characteristics the rapid test method omits the traditional tire test totally.At the mean time the accuracy of the two method is much closed.The rapid test method is explained theoretically and the test process is designed.The key parameters of tire are extracted and the comparison is made between rapid test and traditional test method.The result show that the identification accuracy based on the rapid test method is almost equal to the accuracy of the conventional one.Then,the heat generated during the rapid test method and that generated during the conventional test are calculated separately.The comparison shows that the heat generated during the rapid test is much smaller than the heat generated during the conventional test process.This benefits to the reduction of tire wear and the consistency of test results.Finally,it can be concluded that the fast test method can efficiently,accurately and energy-efficiently measure the steady-state and transient characteristics of the tire.
基金National Natural Science Foundation of China(Grant Nos.61675115 and 11974209)the Taishan Scholar Project of Shandong Province of China(Grant No.tsqn201812059)the Shandong Provincial Natural Science Foundation of China(Grant No.ZR2016JL005).
文摘By means of composite quantum collision models,we study the entanglement dynamics of a bipartite system,i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA,while SA is in turn coupled to a thermal reservoir.We are concerned with how the intracollisions of the reservoir qubits influence the entanglement dynamics.We show that even if the system is initially in the separated state,their entanglement can be generated due to the interaction between the qubits.In the long-time limit,the steady-state entanglement can be generated depending on the initial state of S1 and S2 and the environment temperature.We also study the dynamics of tripartite entanglement of the three qubits S1,S2,and SA when they are initially prepared in the GHZ state and separated state,respectively.For the GHZ initial state,the tripartite entanglement can be maintained for a long time when the collision strength between the environment qubits is sufficiently large.
基金Project supported by the National Natural Science Foundation of China (No.10972143)the Shanghai Municipal Education Commission (No.YYY11040)+2 种基金the Shanghai Leading Academic Discipline Project (No.J51501)the Leading Academic Discipline Project of Shanghai Institute of Technology(No.1020Q121001)the Start Foundation for Introducing Talents of Shanghai Institute of Technology (No.YJ2011-26)
文摘The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved. The nonlinear equations governing the transverse vibration are derived from the dynamical, constitutive, and geometrical relations. The method of multiple scales is used to determine the steady-state response. The modulation equation is derived from the solvability condition of eliminating secular terms. Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation. The stability of non- trivial steady-state response is examined via the Routh-Hurwitz criterion.
基金supported by the National Natural Science Foundation of China(41304022)the National 973 Foundation(61322201,2013CB733303)the Youth Innovation Foundation of High Resolution Earth Observation(GFZX04060103-5-12)
文摘The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What's more,based on degree error RMS of potential coefficients,the detailed expressions of spectral combination formulae and the corresponding spectral weights in the Earth's gravitational field model(EGM) determination using GOCE + GRACE and CHAMP + GRACE + GOCE are derived.The fundamental situation that ulux-champ2013 s,tongji-GRACE01,go-cons-gcf-2-tim-r5 constructed respectively by CHAMP,GRACE,GOCE data and go-cons-gcf-2-dir-r5 constructed by syncretic processing of GRACE,GOCE and LAGEOS data are explained briefly,the degree error RMS,cumulative geoid height error and cumulative gravity anomaly error of these models are calculated.A syncretic model constructed from CHAMP,GRACE and GOCE data,which is expressed by champ + grace + goce,is obtained based on spectral combination method.Experimentation results show that the precision of CHAMP data model is the lowest in satellite-only models,so it is not needed in the determination of syncretic models.The GRACE data model can improve the GOCE data model in medium-long wavelength,so the overall precision of syncretic model can be improved.Consequently,as many types of gravimetric data as possible should be combined together in the data processing in order to strengthen the quality and reliability with widening scope and improve the precision and spatial resolution of the computational results.
基金Project supported by the National Natural Science Foundation of China (Nos. 10801090, 10726016)
文摘The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem. The local and global stability of the positive constant steady-state are discussed, and then some results for non- existence of positive non-constant steady-states are derived.
基金Project supported by the National Natural Science Foundation of China (No.19831060) the 333 Project of Jiangsu Province of China.
文摘In this paper, the authors deal with the non-constant positive steady-states of a predator-prey-mutualist model with homogeneous Neumann boundary condition. They first give a priori estimates (positive upper and lower bounds) of positive steady-states,and then study the non-existence, the global existence and bifurcation of non-constant positive steady-states as some parameters are varied. Finally the asymptotic behavior of such solutions as d3 →∞ is discussed.
基金supported by the Key Research and Development Program of Guangdong Province (No. 2018B030339001)the National Key Research and Development Program of China (No. 2017YFB1002505)the National Natural Science Foundation of China (No. 61431007)
文摘This study explored methods for improving the performance of Steady-State Visual Evoked Potential(SSVEP)-based Brain-Computer Interfaces(BCI), and introduced a new analytical method to quantitatively analyze and reflect the characteristics of SSVEP. We focused on the effect of the pre-stimulation paradigm on the SSVEP dynamic models and the dynamic response process of SSVEP, and performed a comparative analysis of three pre-stimulus paradigms(black, gray, and white). Four dynamic models with different orders(second-and third-order)and with and without a zero point were used to fit the SSVEP envelope. The zero-pole analytical method was adopted to conduct quantitative analysis on the dynamic models, and the response characteristics of SSVEP were represented by zero-pole distribution characteristics. The results of this study indicated that the pre-stimulation paradigm affects the characteristics of SSVEP, and the dynamic models had good fitting abilities with SSVEPs under various types of pre-stimulation. Furthermore, the zero-pole characteristics of the models effectively characterize the damping coefficient, oscillation period, and other SSVEP characteristics. The comparison of zeros and poles indicated that the gray pre-stimulation condition corresponds to a lower damping coefficient, thus showing its potential to improve the performance of SSVEP-BCIs.