The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated wo...The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ~6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.展开更多
To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a ...To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a full bridge LLC resonant converter,three-level half bridge LLC resonant converter,and variable frequency control mode,the converter realizes an intelligent estimation of input voltage by automatically changing its internal cir-cuit topology.Under this control strategy,different input voltages determine different operation modes.This is achieved in full bridge LLC mode when the input voltage is low.If the input voltage rises to a certain level,it operates in three-level half bridge LLC mode.These switches are digital and entirely carried out by the DSP(Digi-tal Signal Processor),which means that an auxiliary circuit is unnecessary,where a simple strategy of software modification can be utilized.Experimental results of a 500W prototype with 100V~600V input voltage and full load efficiency of up to 92%are developed to verify feasibility and practicability.This type of converter is suitable for applications with an ultra-wide input voltage range,such as wind turbines,photovoltaic generators,bioenergy,and other renewable energy sources.展开更多
Due to the lack of flexible interconnection devices,power imbalances between networks cannot be relieved effectively.Meanwhile,increasing the penetration of distributed generators exacerbates the temporal power imbala...Due to the lack of flexible interconnection devices,power imbalances between networks cannot be relieved effectively.Meanwhile,increasing the penetration of distributed generators exacerbates the temporal power imbalances caused by large peak-valley load differences.To improve the operational economy lowered by spatiotemporal power imbalances,this paper proposes a two-stage optimization strategy for active distribution networks(ADNs)interconnected by soft open points(SOPs).The SOPs and energy storage system(ESS)are adopted to transfer power spatially and temporally,respectively.In the day-ahead scheduling stage,massive stochastic scenarios against the uncertainty of wind turbine output are generated first.To improve computational efficiency in massive stochastic scenarios,an equivalent model between networks considering sensitivities of node power to node voltage and branch current is established.The introduction of sensitivities prevents violations of voltage and current.Then,the operating ranges(ORs)of the active power of SOPs and the state of charge(SOC)of ESS are obtained from models between networks and within the networks,respectively.In the intraday corrective control stage,based on day-ahead ORs,a receding-horizon model that minimizes the purchase cost of electricity and voltage deviations is established hour by hour.Case studies on two modified ADNs show that the proposed strategy achieves spatiotemporal power balance with lower cost compared with traditional strategies.展开更多
针对柔性直流输电(voltage source converter–high voltage direct current,VSC-HVDC)模块化多电平换流器(modular multilevel converter,MMC)桥臂发生故障停运和不完整运行工况下无法传输有功功率的问题,首先介绍MMC不完整运行无功传...针对柔性直流输电(voltage source converter–high voltage direct current,VSC-HVDC)模块化多电平换流器(modular multilevel converter,MMC)桥臂发生故障停运和不完整运行工况下无法传输有功功率的问题,首先介绍MMC不完整运行无功传输原理;然后,分析MMC不完整运行方式有功功率传输的可能性;进而提出MMC不完整运行方式的有功功率传输控制方法,并研究不完整运行方式下的组合种类、功率运行区间和有功功率波动特性,归纳MMC不完整运行有功功率传输条件;最后,在MATLAB软件平台中搭建柔性直流系统模型,验证了所提出的不完整运行有功功率传输策略的正确性。展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2014CB046403)National Key Technology R&D Program of the Twelfth Five-year Plan of China(Grant No.2013BAF07B01)
文摘The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ~6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.
文摘To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a full bridge LLC resonant converter,three-level half bridge LLC resonant converter,and variable frequency control mode,the converter realizes an intelligent estimation of input voltage by automatically changing its internal cir-cuit topology.Under this control strategy,different input voltages determine different operation modes.This is achieved in full bridge LLC mode when the input voltage is low.If the input voltage rises to a certain level,it operates in three-level half bridge LLC mode.These switches are digital and entirely carried out by the DSP(Digi-tal Signal Processor),which means that an auxiliary circuit is unnecessary,where a simple strategy of software modification can be utilized.Experimental results of a 500W prototype with 100V~600V input voltage and full load efficiency of up to 92%are developed to verify feasibility and practicability.This type of converter is suitable for applications with an ultra-wide input voltage range,such as wind turbines,photovoltaic generators,bioenergy,and other renewable energy sources.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400-202199281A-0-0-00)。
文摘Due to the lack of flexible interconnection devices,power imbalances between networks cannot be relieved effectively.Meanwhile,increasing the penetration of distributed generators exacerbates the temporal power imbalances caused by large peak-valley load differences.To improve the operational economy lowered by spatiotemporal power imbalances,this paper proposes a two-stage optimization strategy for active distribution networks(ADNs)interconnected by soft open points(SOPs).The SOPs and energy storage system(ESS)are adopted to transfer power spatially and temporally,respectively.In the day-ahead scheduling stage,massive stochastic scenarios against the uncertainty of wind turbine output are generated first.To improve computational efficiency in massive stochastic scenarios,an equivalent model between networks considering sensitivities of node power to node voltage and branch current is established.The introduction of sensitivities prevents violations of voltage and current.Then,the operating ranges(ORs)of the active power of SOPs and the state of charge(SOC)of ESS are obtained from models between networks and within the networks,respectively.In the intraday corrective control stage,based on day-ahead ORs,a receding-horizon model that minimizes the purchase cost of electricity and voltage deviations is established hour by hour.Case studies on two modified ADNs show that the proposed strategy achieves spatiotemporal power balance with lower cost compared with traditional strategies.
文摘针对柔性直流输电(voltage source converter–high voltage direct current,VSC-HVDC)模块化多电平换流器(modular multilevel converter,MMC)桥臂发生故障停运和不完整运行工况下无法传输有功功率的问题,首先介绍MMC不完整运行无功传输原理;然后,分析MMC不完整运行方式有功功率传输的可能性;进而提出MMC不完整运行方式的有功功率传输控制方法,并研究不完整运行方式下的组合种类、功率运行区间和有功功率波动特性,归纳MMC不完整运行有功功率传输条件;最后,在MATLAB软件平台中搭建柔性直流系统模型,验证了所提出的不完整运行有功功率传输策略的正确性。