Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,exper...Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.展开更多
The carrier transport properties of the blends of the hole transport material poly(N-vinylcarbazole) (PVK) and the electron transport material tris (8-hydroxyquinolinolato) aluminumⅢ(Alq_3) are investigated at room t...The carrier transport properties of the blends of the hole transport material poly(N-vinylcarbazole) (PVK) and the electron transport material tris (8-hydroxyquinolinolato) aluminumⅢ(Alq_3) are investigated at room temperature using steady-state and time-resolved transient photocurrent measurements as a function of doping concentration of Alq_3.Due to lower LUMO and higher HOMO energy level of Alq_3 than those of PVK,Alq_3 molecules may act as carrier trap states in PVK films at low concentration.However,at...展开更多
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
We observed the steady-state visually evoked potential(SSVEP) from a healthy subject using a compact quad-channel potassium spin exchange relaxation-free(SERF) optically pumped magnetometer(OPM). To this end, 30 s of ...We observed the steady-state visually evoked potential(SSVEP) from a healthy subject using a compact quad-channel potassium spin exchange relaxation-free(SERF) optically pumped magnetometer(OPM). To this end, 30 s of data were collected, and SSVEP-related magnetic responses with signal intensity ranging from 150 fT to 300 f T were observed for all four channels. The corresponding signal to noise ratio(SNR) was in the range of 3.5–5.5. We then used different channels to operate the sensor as a gradiometer. In the specific case of detecting SSVEP, we noticed that the short channel separation distance led to a strongly diminished gradiometer signal. Although not optimal for the case of SSVEP detection, this set-up can prove to be highly useful for other magnetoencephalography(MEG) paradigms that require good noise cancellation.Considering its compactness, low cost, and good performance, the K-SERF sensor has great potential for biomagnetic field measurements and brain-computer interfaces(BCI).展开更多
The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excite...The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excited by the firing pulsations of the engine and the harmonic motion of the foundation. Nonlinear discrete-continuous equations are derived for coupling the transverse vibration of the belt spans and the rotations of the driving and driven pulleys and the accessory pulley. The nonlinear dynamics is studied under equal and multiple relations between the frequency of the fir- ing pulsations and the frequency of the foundation motion. Furthermore, translating belt spans are modeled as axially moving strings. A set of nonlinear piecewise ordinary differ- ential equations is achieved by using the Galerkin truncation. Under various relations between the excitation frequencies, the time histories of the dynamical system are numerically simulated based on the time discretization method. Further- more, the stable steady-state periodic response curves are calculated based on the frequency sweep. Moreover, the convergence of the Galerkin truncation is examined. Numer- ical results demonstrate that the one-way clutch reduces the resonance amplitude of the rotations of the driven pul- ley and the accessory pulley. On the other hand, numerical examples prove that the resonance areas of the belt spans are decreased by eliminating the torque-transmitting in the opposite direction. With the increasing amplitude of the foun- dation excitation, the damping effect of the one-way clutch will be reduced. Furthermore, as the amplitude of the firing pulsations of the engine increases, the jumping phenomena in steady-state response curves of the belt-drive system with or without a one-way clutch both occur.展开更多
The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated wo...The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ~6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.展开更多
In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the...In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the to- tal nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods,this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia,nitrate,and total nitrogen in the effluent.To verify the simulation results,pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results,which proved the validity of the developed model. The sensitivity of the model predictions was analyzed.After verification of the validity,the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period,the effluent total nitrogen concentrations were all below 5mg·L -1 ,with more than 90%removal efficiency.展开更多
A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the ...A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.展开更多
Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attr...Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.展开更多
Gassolid hydrodynamic steadystate operation is the operating basis in a chemical looping dualreactor system.This study reported the experimental results on the steadystate operation characteristics of gassolid flow in...Gassolid hydrodynamic steadystate operation is the operating basis in a chemical looping dualreactor system.This study reported the experimental results on the steadystate operation characteristics of gassolid flow in a 15.5 m high dual circulating fluidized bed(CFB)cold test system.The effects of superficial gas velocity,static bed material height and solid returning modes on the steadystate operation characteristics between the two CFBs were investigated.Results suggest that the solid distributions in the dual CFB test system was mainly determined by the superficial gas velocity and larger solid inventory may help to improve the solid distributions.Besides,crossreturning mode coupled with selfreturning is good for steadystate running in the dualreactor test system.展开更多
It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a ne...It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells.展开更多
The wind effects on steady-state scan characteristics and hit probability of terminal-sensitive projectile were discussed in this paper. Considering wind as the constitutions of the average wind and the impulsive wind...The wind effects on steady-state scan characteristics and hit probability of terminal-sensitive projectile were discussed in this paper. Considering wind as the constitutions of the average wind and the impulsive wind, a simplified wind field model was established for the ballistic calculation of the steady-state scan phase; under the windy condition, the effects of the range wind and the beam wind on the steady-state scan characteristics of the terminal-sensitive projectile were analyzed in detail and its hit probabilities for a certain armored target were calculated. The calculated results show that, when the wind speed exceeds a certain value, the hit probabilities of terminal-sensitive projectile drop rapidly; the wind effects must be considered in the application of the terminal-sensitive projectiles. This paper provides some theoretical references for the fire wind speed correction and the global structure optimization of the terminal-sensitive projectile.展开更多
We study the steady-state entanglement and heat current of two coupled qubits, in which two qubits are connected with two independent heat baths(IHBs) or two common heat baths(CHBs). We construct the master equation i...We study the steady-state entanglement and heat current of two coupled qubits, in which two qubits are connected with two independent heat baths(IHBs) or two common heat baths(CHBs). We construct the master equation in the eigenstate representation of two coupled qubits to describe the dynamics of the total system and derive the solutions in the steadystate with stronger coupling regime between two qubits than qubit–baths. We do not make the rotating wave approximation(RWA) for the qubit–qubit interaction, and so we are able to investigate the behaviors of the system in both the strong coupling regime and the weak coupling regime, respectively. In an equilibrium bath, we find that the entanglement decreases with the bath temperature and energy detuning increasing under the strong coupling regime. In the weak coupling regime,the entanglement increases with coupling strength increasing and decreases with the bath temperature and energy detuning increasing. In a nonequilibrium bath, the entanglement without RWA is useful for entanglement at lower temperatures.We also study the heat currents of the two coupled qubits and their variations with the energy detuning, coupling strength and low temperature. In the strong(weak) coupling regime, the heat current increases(decreases) with coupling strength increasing when the temperature of one bath is lower(higher) than the other, and the energy detuning leads to a positive(negative) effect when the temperature is low(high). In the weak coupling regime, the variation trend of heat current is opposite to that of coupling strength for the IHB case and the CHB case.展开更多
A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron cur...A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron current density and electron temperature, coupled with the Poisson equation of the electrostatic potential in a bounded interval supplemented with proper boundary conditions. The existence and uniqueness of a strong subsonic steady-state solution with positive particle density and positive temperature is established. The proof is based on the fixed-point arguments, the Stampacchia truncation methods, and the basic energy estimates.展开更多
A systematic approach for the steady-state operation analysis of chemical processes is pro-posed.The method affords the possibility of taking operation resilience into consideration during thestage of process design.I...A systematic approach for the steady-state operation analysis of chemical processes is pro-posed.The method affords the possibility of taking operation resilience into consideration during thestage of process design.It may serve the designer as an efficient means for the initial screening ofalternative design schemes.An ideal heat integrated distillation column(HIDiC),without any reboileror condenser attached,is studied throughout this work.It has been found that among the various va-riables concerned with the ideal HIDiC,feed thermal condition appears to be the only factor exertingsignificant influences on the interaction between the top and the bottom control loops.Maximuminteraction is expected when the feed thermal condition approaches 0.5.Total number of stages andheat transfer rate are essential to the system ability of disturbance rejection.Therefore,more stagesand higher heat transfer rate ought to be preferred.But,too many stages and higher heat transfer ratemay increase the load of the展开更多
Robust and fast fat suppression is a challenge in balanced steady-state free precession (SSFP) magnetic resonance imaging. Although single-acquisition phase-sensitive SSFP can provide fat-suppressed images in short ...Robust and fast fat suppression is a challenge in balanced steady-state free precession (SSFP) magnetic resonance imaging. Although single-acquisition phase-sensitive SSFP can provide fat-suppressed images in short scan time, phase errors, especially spatially-dependent phase shift, caused by a variety of factors may result in misplacement of fat and water voxels. In this paper, a novel phase correction algorithm was used to calibrate those phase errors during image reconstruction. This algorithm corrects phase by region growing, employing both the magnitude and the phase information of image pixels. Phantom and in vivo imagings were performed to validate the technique. As a result, excellent fat-suppressed images were acquired by using single-acquisition phase-sensitive SSFP with phase correction.展开更多
Spherical-symmetric steady-state response problem of piezoelectric spherical shell in the absence of body force and free charges is discussed. The steady-state response solutions of mechanical displacement, stresses, ...Spherical-symmetric steady-state response problem of piezoelectric spherical shell in the absence of body force and free charges is discussed. The steady-state response solutions of mechanical displacement, stresses, strains, potential and electric displacement were derived Sram constitutive relations, geometric and motion equations for the piezoelectric medium under external excitation (i.e. applied surface traction and potential) in spherical coordinate system. As an application of the? general solutions, the problem of an elastic spherical shell with piezoelectric actuator and sensor layers was solved. The results could provide good theoretical basis for the spherical-symmetric dynamic control problem of piezoelectric intelligent structure. Furthermore, the solutions can serve as reference for the research of general dynamic control problem.展开更多
An inhomogeneously broadened two-mode laser system with cross-correlations between the real and imag- inary parts of quantum noise is considered. The Fokker-Planek equation of the system is derived by the phase-lockin...An inhomogeneously broadened two-mode laser system with cross-correlations between the real and imag- inary parts of quantum noise is considered. The Fokker-Planek equation of the system is derived by the phase-locking method. The steady-state probability distribution, the mean light intensity, the normalization autocorrelation function, and cross correlation function are calculated. The results indicate that: (i) The cross-correlation between the real and imaginary parts of quantum noise can cause the stationary probability distribution from one peak structure to two extrema structure when the laser system is operated above threshold; (ii) The cross-correlation between the real and imaginary parts of quantum noise enhance the light intensity fluctuation and decrease the laser output when the laser system is operated below or near threshold; (iii) The effect of the cross-correlation between the real and imaginary parts of quantum noise is very weak on the stationary properties when the laser system is operated far above threshold.展开更多
A steady-state, rigid-plastic rolling problem for temperature and strain-rate dependent materials with nonlocal friction is considered. A variational formulation is derived, coupling a nonlinear variational inequality...A steady-state, rigid-plastic rolling problem for temperature and strain-rate dependent materials with nonlocal friction is considered. A variational formulation is derived, coupling a nonlinear variational inequality for the velocity and a nonlinear vari- ational equation for the temperature. The existence and uniqueness results are obtained by a proposed fixed point method.展开更多
The steady-state transverse vibration of an axially moving string with geometric nonlinearity was investigated. The transport speed was assumed to be a constant mean speed with small harmonic variations. The nonlinear...The steady-state transverse vibration of an axially moving string with geometric nonlinearity was investigated. The transport speed was assumed to be a constant mean speed with small harmonic variations. The nonlinear partial-differential equation that governs the transverse vibration of the string was derived by use of the Hamilton principle. The method of multiple scales was applied directly to the equation. The solvability condition of eliminating the secular terms was established. Closed form solutions for the amplitude and the existence conditions of nontrivial steady-state response of the two-to-one parametric resonance were obtained. Some numerical examples showing effects of the mean transport speed, the amplitude and the frequency of speed variation were presented. The Liapunov linearized stability theory was employed to derive the instability conditions of the trivial solution and the nontrivial solutions for the two-to-one parametric resonance. Some numerical examples highlighting influences of the related parameters on the instability conditions were presented.展开更多
基金supported by the Explore Research Project of the General Armament Department (No. NHA13002)the Fundamental Research Funds for the Central Universities (No.NP2016412)the National Natural Science Foundation of China(No.51505261)
文摘Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.
基金Trans-Century Training Program Foundation for the Talents of Natural Science by the State Education Commission,Key Project of Chinese Ministry of Education (No.105041)National Natural Science & Foundation Committee of China (NSFC) (Nos.90401006,10434030 and 90301004)+1 种基金State key project of basic research (No.2003CB314707)the Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology,South China University of Technology,Ministry of Education,China.One of the authors (Hui Jin) is also grateful to the Doctor Innovation Foundation of Beijing Jiaotong University for financial support.
文摘The carrier transport properties of the blends of the hole transport material poly(N-vinylcarbazole) (PVK) and the electron transport material tris (8-hydroxyquinolinolato) aluminumⅢ(Alq_3) are investigated at room temperature using steady-state and time-resolved transient photocurrent measurements as a function of doping concentration of Alq_3.Due to lower LUMO and higher HOMO energy level of Alq_3 than those of PVK,Alq_3 molecules may act as carrier trap states in PVK films at low concentration.However,at...
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300600 and 2016YFA0301500)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB07030000 and XDBS32000000)+1 种基金the National Natural Science Foundation of China(Grant Nos.11474347 and 31730039)the Fund from the Ministry of Science and Technology of China(Grant No.2015CB351701)
文摘We observed the steady-state visually evoked potential(SSVEP) from a healthy subject using a compact quad-channel potassium spin exchange relaxation-free(SERF) optically pumped magnetometer(OPM). To this end, 30 s of data were collected, and SSVEP-related magnetic responses with signal intensity ranging from 150 fT to 300 f T were observed for all four channels. The corresponding signal to noise ratio(SNR) was in the range of 3.5–5.5. We then used different channels to operate the sensor as a gradiometer. In the specific case of detecting SSVEP, we noticed that the short channel separation distance led to a strongly diminished gradiometer signal. Although not optimal for the case of SSVEP detection, this set-up can prove to be highly useful for other magnetoencephalography(MEG) paradigms that require good noise cancellation.Considering its compactness, low cost, and good performance, the K-SERF sensor has great potential for biomagnetic field measurements and brain-computer interfaces(BCI).
基金project was supported by the State Key Program of the National Natural Science Foundation of China(Grant 11232009)the National Natural Science Foundation of China(Grants 11372171,11422214)
文摘The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excited by the firing pulsations of the engine and the harmonic motion of the foundation. Nonlinear discrete-continuous equations are derived for coupling the transverse vibration of the belt spans and the rotations of the driving and driven pulleys and the accessory pulley. The nonlinear dynamics is studied under equal and multiple relations between the frequency of the fir- ing pulsations and the frequency of the foundation motion. Furthermore, translating belt spans are modeled as axially moving strings. A set of nonlinear piecewise ordinary differ- ential equations is achieved by using the Galerkin truncation. Under various relations between the excitation frequencies, the time histories of the dynamical system are numerically simulated based on the time discretization method. Further- more, the stable steady-state periodic response curves are calculated based on the frequency sweep. Moreover, the convergence of the Galerkin truncation is examined. Numer- ical results demonstrate that the one-way clutch reduces the resonance amplitude of the rotations of the driven pul- ley and the accessory pulley. On the other hand, numerical examples prove that the resonance areas of the belt spans are decreased by eliminating the torque-transmitting in the opposite direction. With the increasing amplitude of the foun- dation excitation, the damping effect of the one-way clutch will be reduced. Furthermore, as the amplitude of the firing pulsations of the engine increases, the jumping phenomena in steady-state response curves of the belt-drive system with or without a one-way clutch both occur.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2014CB046403)National Key Technology R&D Program of the Twelfth Five-year Plan of China(Grant No.2013BAF07B01)
文摘The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ~6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.
基金Supported by the National Natural Science Foundation Key International Cooperation Project of China (No.50521140075), the 863 Attached Financial Supporting Item of Beijing Municipal Science and Technology Commission (No.Z0005186040421) and the Doctor Subject Soecial Financial Supporfing Item of High College (No.20060005002).
文摘In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the to- tal nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods,this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia,nitrate,and total nitrogen in the effluent.To verify the simulation results,pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results,which proved the validity of the developed model. The sensitivity of the model predictions was analyzed.After verification of the validity,the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period,the effluent total nitrogen concentrations were all below 5mg·L -1 ,with more than 90%removal efficiency.
基金National Hi-tech Research end Development Program of China (863 Program,No.2002AA501700,No.2003AA501012)
文摘A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.
基金supported by the Natural Science Foundation of Ningbo,China (Grant Nos.2009A610014 and 2009A610154)the Natural Science Foundation of Zhejiang Province,China (Grant No.Y6090131)
文摘Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.
文摘Gassolid hydrodynamic steadystate operation is the operating basis in a chemical looping dualreactor system.This study reported the experimental results on the steadystate operation characteristics of gassolid flow in a 15.5 m high dual circulating fluidized bed(CFB)cold test system.The effects of superficial gas velocity,static bed material height and solid returning modes on the steadystate operation characteristics between the two CFBs were investigated.Results suggest that the solid distributions in the dual CFB test system was mainly determined by the superficial gas velocity and larger solid inventory may help to improve the solid distributions.Besides,crossreturning mode coupled with selfreturning is good for steadystate running in the dualreactor test system.
基金financial support from the Open Fund(PLN1003) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)the National Science and Technology Major Project in the l lth Five-Year Plan(Grant No.2008ZX05054)
文摘It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells.
基金Sponsored by Doctoral Foundation of Ministry of Education of China (20093219120006)
文摘The wind effects on steady-state scan characteristics and hit probability of terminal-sensitive projectile were discussed in this paper. Considering wind as the constitutions of the average wind and the impulsive wind, a simplified wind field model was established for the ballistic calculation of the steady-state scan phase; under the windy condition, the effects of the range wind and the beam wind on the steady-state scan characteristics of the terminal-sensitive projectile were analyzed in detail and its hit probabilities for a certain armored target were calculated. The calculated results show that, when the wind speed exceeds a certain value, the hit probabilities of terminal-sensitive projectile drop rapidly; the wind effects must be considered in the application of the terminal-sensitive projectiles. This paper provides some theoretical references for the fire wind speed correction and the global structure optimization of the terminal-sensitive projectile.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675115 and 11704221)
文摘We study the steady-state entanglement and heat current of two coupled qubits, in which two qubits are connected with two independent heat baths(IHBs) or two common heat baths(CHBs). We construct the master equation in the eigenstate representation of two coupled qubits to describe the dynamics of the total system and derive the solutions in the steadystate with stronger coupling regime between two qubits than qubit–baths. We do not make the rotating wave approximation(RWA) for the qubit–qubit interaction, and so we are able to investigate the behaviors of the system in both the strong coupling regime and the weak coupling regime, respectively. In an equilibrium bath, we find that the entanglement decreases with the bath temperature and energy detuning increasing under the strong coupling regime. In the weak coupling regime,the entanglement increases with coupling strength increasing and decreases with the bath temperature and energy detuning increasing. In a nonequilibrium bath, the entanglement without RWA is useful for entanglement at lower temperatures.We also study the heat currents of the two coupled qubits and their variations with the energy detuning, coupling strength and low temperature. In the strong(weak) coupling regime, the heat current increases(decreases) with coupling strength increasing when the temperature of one bath is lower(higher) than the other, and the energy detuning leads to a positive(negative) effect when the temperature is low(high). In the weak coupling regime, the variation trend of heat current is opposite to that of coupling strength for the IHB case and the CHB case.
基金the Educational Department of Hubei province(Q200628002)the National Science Foundation of China(10701057)
文摘A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron current density and electron temperature, coupled with the Poisson equation of the electrostatic potential in a bounded interval supplemented with proper boundary conditions. The existence and uniqueness of a strong subsonic steady-state solution with positive particle density and positive temperature is established. The proof is based on the fixed-point arguments, the Stampacchia truncation methods, and the basic energy estimates.
文摘A systematic approach for the steady-state operation analysis of chemical processes is pro-posed.The method affords the possibility of taking operation resilience into consideration during thestage of process design.It may serve the designer as an efficient means for the initial screening ofalternative design schemes.An ideal heat integrated distillation column(HIDiC),without any reboileror condenser attached,is studied throughout this work.It has been found that among the various va-riables concerned with the ideal HIDiC,feed thermal condition appears to be the only factor exertingsignificant influences on the interaction between the top and the bottom control loops.Maximuminteraction is expected when the feed thermal condition approaches 0.5.Total number of stages andheat transfer rate are essential to the system ability of disturbance rejection.Therefore,more stagesand higher heat transfer rate ought to be preferred.But,too many stages and higher heat transfer ratemay increase the load of the
基金Project partially supported by the National Natural Science Foundation of China (Grant Nos 10527003 and 60672104)the State Key Development Program for Basic Research of China (Grant No 2006CB705700-05)+1 种基金Joint Research Foundation of Beijing Education Committee (Grant No SYS100010401)Beijing Natural Science Foundation (Grant No 3073019)
文摘Robust and fast fat suppression is a challenge in balanced steady-state free precession (SSFP) magnetic resonance imaging. Although single-acquisition phase-sensitive SSFP can provide fat-suppressed images in short scan time, phase errors, especially spatially-dependent phase shift, caused by a variety of factors may result in misplacement of fat and water voxels. In this paper, a novel phase correction algorithm was used to calibrate those phase errors during image reconstruction. This algorithm corrects phase by region growing, employing both the magnitude and the phase information of image pixels. Phantom and in vivo imagings were performed to validate the technique. As a result, excellent fat-suppressed images were acquired by using single-acquisition phase-sensitive SSFP with phase correction.
文摘Spherical-symmetric steady-state response problem of piezoelectric spherical shell in the absence of body force and free charges is discussed. The steady-state response solutions of mechanical displacement, stresses, strains, potential and electric displacement were derived Sram constitutive relations, geometric and motion equations for the piezoelectric medium under external excitation (i.e. applied surface traction and potential) in spherical coordinate system. As an application of the? general solutions, the problem of an elastic spherical shell with piezoelectric actuator and sensor layers was solved. The results could provide good theoretical basis for the spherical-symmetric dynamic control problem of piezoelectric intelligent structure. Furthermore, the solutions can serve as reference for the research of general dynamic control problem.
基金Supported by the National Natural Science Foundation of China under Grant No.10865006
文摘An inhomogeneously broadened two-mode laser system with cross-correlations between the real and imag- inary parts of quantum noise is considered. The Fokker-Planek equation of the system is derived by the phase-locking method. The steady-state probability distribution, the mean light intensity, the normalization autocorrelation function, and cross correlation function are calculated. The results indicate that: (i) The cross-correlation between the real and imaginary parts of quantum noise can cause the stationary probability distribution from one peak structure to two extrema structure when the laser system is operated above threshold; (ii) The cross-correlation between the real and imaginary parts of quantum noise enhance the light intensity fluctuation and decrease the laser output when the laser system is operated below or near threshold; (iii) The effect of the cross-correlation between the real and imaginary parts of quantum noise is very weak on the stationary properties when the laser system is operated far above threshold.
文摘A steady-state, rigid-plastic rolling problem for temperature and strain-rate dependent materials with nonlocal friction is considered. A variational formulation is derived, coupling a nonlinear variational inequality for the velocity and a nonlinear vari- ational equation for the temperature. The existence and uniqueness results are obtained by a proposed fixed point method.
文摘The steady-state transverse vibration of an axially moving string with geometric nonlinearity was investigated. The transport speed was assumed to be a constant mean speed with small harmonic variations. The nonlinear partial-differential equation that governs the transverse vibration of the string was derived by use of the Hamilton principle. The method of multiple scales was applied directly to the equation. The solvability condition of eliminating the secular terms was established. Closed form solutions for the amplitude and the existence conditions of nontrivial steady-state response of the two-to-one parametric resonance were obtained. Some numerical examples showing effects of the mean transport speed, the amplitude and the frequency of speed variation were presented. The Liapunov linearized stability theory was employed to derive the instability conditions of the trivial solution and the nontrivial solutions for the two-to-one parametric resonance. Some numerical examples highlighting influences of the related parameters on the instability conditions were presented.