In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state pr...In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.展开更多
Building a technology alliance is the main strategy for the United States to maintain its scientific and technological hegemony under its technopolitical strategic framework.After Joe Biden took office,the United Stat...Building a technology alliance is the main strategy for the United States to maintain its scientific and technological hegemony under its technopolitical strategic framework.After Joe Biden took office,the United States implemented“small yard with high fences”strategy for scientific and technological competition,as the first step toward building a technology alliance.The main goal is to restrict the flow of strategic emerging technologies and factors of innovation to rival countries.展开更多
Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no...Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no simple ultimatum strategy which a player can control the return of the other participants.The zero-determinant strategy in the iterated prisoner′s dilemma dramatically expands our understanding of the classic game by uncovering strategies that provide a unilateral advantage to sentient players pitted against unwitting opponents.However,strategies in the prisoner′s dilemma game are only two strategies.Are there these results for general multi-strategy games?To address this question,the paper develops a theory for zero-determinant strategies for multi-strategy games,with any number of strategies.The analytical results exhibit a similar yet different scenario to the case of two-strategy games.The results are also applied to the Snowdrift game,the Hawk-Dove game and the Chicken game.展开更多
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr...BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.展开更多
A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the ...A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.展开更多
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect...Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.展开更多
The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenz...The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM.展开更多
The majority of nonlinear stochastic systems can be expressed as the quasi-Hamiltonian systems in science and engineering. Moreover, the corresponding Hamiltonian system offers two concepts of integrability and resona...The majority of nonlinear stochastic systems can be expressed as the quasi-Hamiltonian systems in science and engineering. Moreover, the corresponding Hamiltonian system offers two concepts of integrability and resonance that can fully describe the global relationship among the degrees-of-freedom(DOFs) of the system. In this work, an effective and promising approximate semi-analytical method is proposed for the steady-state response of multi-dimensional quasi-Hamiltonian systems. To be specific, the trial solution of the reduced Fokker–Plank–Kolmogorov(FPK) equation is obtained by using radial basis function(RBF) neural networks. Then, the residual generated by substituting the trial solution into the reduced FPK equation is considered, and a loss function is constructed by combining random sampling technique. The unknown weight coefficients are optimized by minimizing the loss function through the Lagrange multiplier method. Moreover, an efficient sampling strategy is employed to promote the implementation of algorithms. Finally, two numerical examples are studied in detail, and all the semi-analytical solutions are compared with Monte Carlo simulations(MCS) results. The results indicate that the complex nonlinear dynamic features of the system response can be captured through the proposed scheme accurately.展开更多
We propose an adaptive stencil construction for high-order accurate finite volume schemes a posteriori stabilized devoted to solve one-dimensional steady-state hyperbolic equations.High accuracy(up to the sixth-order ...We propose an adaptive stencil construction for high-order accurate finite volume schemes a posteriori stabilized devoted to solve one-dimensional steady-state hyperbolic equations.High accuracy(up to the sixth-order presently)is achieved,thanks to polynomial recon-structions while stability is provided with an a posteriori MOOD method which controls the cell polynomial degree for eliminating non-physical oscillations in the vicinity of dis-continuities.We supplemented this scheme with a stencil construction allowing to reduce even further the numerical dissipation.The stencil is shifted away from troubles(shocks,discontinuities,etc.)leading to less oscillating polynomial reconstructions.Experimented on linear,Burgers',and Euler equations,we demonstrate that the adaptive stencil technique manages to retrieve smooth solutions with optimal order of accuracy but also irregular ones without spurious oscillations.Moreover,we numerically show that the approach allows to reduce the dissipation still maintaining the essentially non-oscillatory behavior.展开更多
One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon o...One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions.展开更多
The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainl...The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.展开更多
In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and l...In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and linear friction.The latter arises from the influence of the Hartmann bottom boundary layer in a three-dimensional(3D)MHD experiment in a square bottomed cell.The basic flow in this fluid system is a square eddy flow exhibiting a network of N~2 vortices rotating alternately in clockwise and anticlockwise directions.When N is odd,the instability of the flow gives rise to secondary steady-state flows and secondary time-periodic flows,exhibiting similar characteristics to those observed when N=3.For this reason,this study focuses on the instability of the square eddy flow of nine vortices.It is shown that there exist eight bi-critical values corresponding to the existence of eight neutral eigenfunction spaces.Especially,there exist non-real neutral eigenfunctions,which produce secondary time-periodic flows exhibiting vortices merging in an oscillatory manner.This Hopf bifurcation phenomenon has not been observed in earlier investigations.展开更多
Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and manageme...Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.展开更多
Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarize...Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarizes four concepts based on the research on post-disaster reconstruction both domestically and internationally,as well as the recovery and reconstruction of cultural heritage.Through a field survey of traditional villages in the Ms 6.8 Luding earthquake-stricken area,it is found that there are problems such as insufficient awareness of heritage value,misalignment of scientific reconstruction technology,and insufficient protection of reconstruction elements during the reconstruction process.Traditional villages face the risk of declining or even loss of heritage value.In order to effectively protect traditional villages and inherit the carrier of regional culture,four targeted reconstruction response strategies are proposed,i.e.,to"establish special planning for traditional village preservation","emphasize recovery of the authenticity of village heritage","ensure elements for village heritage recovery"and"promote the activation and utilization of village heritage",based on the problems discovered during the survey and the four concepts summarized in the research on post-disaster reconstruction of traditional villages.The research results hope to provide useful reference for ancient cultural areas affected by earthquakes on how to protect cultural heritage during the post-disaster reconstruction process.展开更多
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
Neuropathy is nerve damage that can cause chronic neuropathic pain, which is challenging to cure and has a significant financial burden. Exercise therapies, including High-Intensity Interval Training (HIIT) and steady...Neuropathy is nerve damage that can cause chronic neuropathic pain, which is challenging to cure and has a significant financial burden. Exercise therapies, including High-Intensity Interval Training (HIIT) and steady-state cardio, are being explored as potential treatments for neuropathic pain. This systematic review compares the effectiveness of HIIT and steady-state cardio for improving function in neurological patients. This article provides an overview of the systematic review conducted on the effects of exercise on neuropathic patients, with a focus on high-intensity interval training (HIIT) and steady-state cardio. The authors conducted a comprehensive search of various databases, identified relevant studies based on predetermined inclusion criteria, and used the EPPI automation application to process the data. The final selection of studies was based on validity and relevance, with redundant articles removed. The article reviews four studies that compare high-intensity interval training (HIIT) to moderate-intensity continuous training (MICT) on various health outcomes. The studies found that HIIT can improve aerobic fitness, cerebral blood flow, and brain function in stroke patients;lower diastolic blood pressure more than MICT and improve insulin sensitivity and skeletal muscle mitochondrial content in obese individuals, potentially helping with the prevention and management of type 2 diabetes. In people with multiple sclerosis, acute exercise can decrease the plasma neurofilament light chain while increasing the flow of the kynurenine pathway. The available clinical and preclinical data suggest that further study on high-intensity interval training (HIIT) and its potential to alleviate neuropathic pain is justified. Randomized controlled trials are needed to investigate the type, intensity, frequency, and duration of exercise, which could lead to consensus and specific HIIT-based advice for patients with neuropathies.展开更多
Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric atta...Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation.Additionally,the reliability of guidance from static teachers diminishes as target models become more robust.This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation(LDAS&ET-AD).Firstly,a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation.A strategy model is introduced to produce attack strategies that enable adversarial examples(AEs)to be created in areas where the target model significantly diverges from the teachers by competing with the target model in minimizing or maximizing the AD loss.Secondly,a teacher evolution strategy is introduced to enhance the reliability and effectiveness of knowledge in improving the generalization performance of the target model.By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,the impact of distillation from each training sample and AE on the target model’s generalization and robustness abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly.Experiments evaluate the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.The experimental results demonstrate that the proposed method achieves a robust precision of 45.39%and 42.63%against AutoAttack(AA)on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2,respectively,marking an improvement of 2.31%and 3.49%over the baseline method.In comparison to state-of-the-art adversarial defense techniques,our method surpasses Introspective Adversarial Distillation,the top-performing method in terms of robustness under AA attack for the CIFAR-10 dataset,with enhancements of 1.40%and 1.43%for ResNet-18 and MobileNet-V2,respectively.These findings demonstrate the effectiveness of our proposed method in enhancing the robustness of deep learning networks(DNNs)against prevalent adversarial attacks when compared to other competing methods.In conclusion,LDAS&ET-AD provides reliable and informative soft labels to one of the most promising defense methods,AT,alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD techniques.We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps ensure a more secure and dependable future for artificial intelligence systems.展开更多
It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,...It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,which has created a new era for ASCVD therapy.However,statin intolerance is not clinically uncommon,which there are several issues with confu-sion and misunderstandings.Hence,a file named Chinese Expert Consensus on the Diagnosis and Management Strategy of Pa-tients With Statin Intolerance,like a navigator,has recently been published written by a team of experts from the Cardiovascular Metabolic Medicine Professional Committee,Expert Committee of the National Center for Cardiovascular Diseases aiming to en-hance the standardized clinical application of statins and improve the prevention and clinical outcome.In this article,author briefly summarized the key points of above consensus in order to helping to comprehending the content of the consensus sugges-tions.展开更多
Background: Helicobacter pylori (Hp) infection is the most widespread bacterial infection in the world. The infection is generally acquired in childhood, but can persist into adulthood. Eradication therapy has undergo...Background: Helicobacter pylori (Hp) infection is the most widespread bacterial infection in the world. The infection is generally acquired in childhood, but can persist into adulthood. Eradication therapy has undergone several modifications. The aim of this study was to evaluate the different therapeutic strategies used in the eradication of Helicobacter pylori infection in the Centre Hospitalier Universitaire La Reference Nationale of N’Djaména. Patients and Methods: This was a prospective, descriptive analytical study spread over one year, from September 2021 to September 2022. Patients at least 15 years of age presenting with dyspeptic symptoms, seen consecutively in a hepato-gastroenterology consultation and with a positive stool test for H. pylori infection, were included in the study. Equally, 1/3 of patients were treated with dual or triple therapy. The remaining third received quadritherapy. Results: A total of 268 patients were included in the study (mean age 38.40 ± 14.66 with extremes of 16 and 80 years). Males predominated in 58% of cases. Overall therapeutic efficacy was 88.9%. According to different therapeutic strategies, efficacy was 90.75% for dual therapy with PPI (Rabeprazole) and Amoxicillin. On the other hand, efficacy was 87% and 88.88% for PPI-based triple therapy and dual antibiotic therapy, and for PPI-based quadruple therapy and triple antibiotic therapy. Conclusion: H. pylori infection is a common disease in Chad. Dual therapy with rabeprazole combined with a high dose of amoxicillin over a period of at least two weeks showed similar if not better efficacy than triple or quadruple therapy.展开更多
The booming live-streaming commerce has significantly changed the traditional e-commerce model,thus attracting much attention from both industry and academia.In recent years,an increasing number of scholars have appli...The booming live-streaming commerce has significantly changed the traditional e-commerce model,thus attracting much attention from both industry and academia.In recent years,an increasing number of scholars have applied analytical models to explore live-streaming strategies for firms in different scenarios.However,the previous literature mainly considers monopolists,while in the real world,competition is not rare.To fill this gap between the literature and practical observations,this paper applies a game theoretical model to study live-streaming adoption and pricing strategy for firms under competitive environments.The results show that,for competitive firms,the equilibrium strategy depends on the relation between the commission rate and the intensity of the market expansion effect.Additionally,compared to the case in which no firm adopts live-streaming,competitive firms do not always benefit from the adoption of live-streaming selling.The paper also shows that competition plays a negative role in inducing a firm to adopt live-streaming.展开更多
基金supported by the NSFC Grant No.11872210 and Grant No.MCMS-I-0120G01Chi-Wang Shu:Research is supported by the AFOSR Grant FA9550-20-1-0055 and the NSF Grant DMS-2010107Jianxian Qiu:Research is supported by the NSFC Grant No.12071392.
文摘In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.
文摘Building a technology alliance is the main strategy for the United States to maintain its scientific and technological hegemony under its technopolitical strategic framework.After Joe Biden took office,the United States implemented“small yard with high fences”strategy for scientific and technological competition,as the first step toward building a technology alliance.The main goal is to restrict the flow of strategic emerging technologies and factors of innovation to rival countries.
文摘Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no simple ultimatum strategy which a player can control the return of the other participants.The zero-determinant strategy in the iterated prisoner′s dilemma dramatically expands our understanding of the classic game by uncovering strategies that provide a unilateral advantage to sentient players pitted against unwitting opponents.However,strategies in the prisoner′s dilemma game are only two strategies.Are there these results for general multi-strategy games?To address this question,the paper develops a theory for zero-determinant strategies for multi-strategy games,with any number of strategies.The analytical results exhibit a similar yet different scenario to the case of two-strategy games.The results are also applied to the Snowdrift game,the Hawk-Dove game and the Chicken game.
基金Supported by Science and Technology Support Program of Qiandongnan Prefecture,No.Qiandongnan Sci-Tech Support[2021]12Guizhou Province High-Level Innovative Talent Training Program,No.Qiannan Thousand Talents[2022]201701.
文摘BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.
基金National Hi-tech Research end Development Program of China (863 Program,No.2002AA501700,No.2003AA501012)
文摘A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.
基金support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”“Innovation Research Team of High-Level Local Universities in Shanghai”support from the National Natural Science Foundation of China (22209103)
文摘Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.
文摘The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12072118)the Natural Science Funds for Distinguished Young Scholar of the Fujian Province, China (Grant No. 2021J06024)the Project for Youth Innovation Fund of Xiamen, China (Grant No. 3502Z20206005)。
文摘The majority of nonlinear stochastic systems can be expressed as the quasi-Hamiltonian systems in science and engineering. Moreover, the corresponding Hamiltonian system offers two concepts of integrability and resonance that can fully describe the global relationship among the degrees-of-freedom(DOFs) of the system. In this work, an effective and promising approximate semi-analytical method is proposed for the steady-state response of multi-dimensional quasi-Hamiltonian systems. To be specific, the trial solution of the reduced Fokker–Plank–Kolmogorov(FPK) equation is obtained by using radial basis function(RBF) neural networks. Then, the residual generated by substituting the trial solution into the reduced FPK equation is considered, and a loss function is constructed by combining random sampling technique. The unknown weight coefficients are optimized by minimizing the loss function through the Lagrange multiplier method. Moreover, an efficient sampling strategy is employed to promote the implementation of algorithms. Finally, two numerical examples are studied in detail, and all the semi-analytical solutions are compared with Monte Carlo simulations(MCS) results. The results indicate that the complex nonlinear dynamic features of the system response can be captured through the proposed scheme accurately.
基金support by FEDER-Fundo Europeu de Desenvolvimento Regional,through COMPETE 2020-Programa Operational Fatores de Competitividade,and the National Funds through FCT-Fundacao para a Ciencia e a Tecnologia,project no.UID/FIS/04650/2019support by FEDER-Fundo Europeu de Desenvolvimento Regional,through COMPETI E 2020-Programa Operacional Fatores de Competitividade,and the National Funds through FCT-Fundacao para a Ciencia e a Tecnologia,project no.POCI-01-0145-FEDER-028118
文摘We propose an adaptive stencil construction for high-order accurate finite volume schemes a posteriori stabilized devoted to solve one-dimensional steady-state hyperbolic equations.High accuracy(up to the sixth-order presently)is achieved,thanks to polynomial recon-structions while stability is provided with an a posteriori MOOD method which controls the cell polynomial degree for eliminating non-physical oscillations in the vicinity of dis-continuities.We supplemented this scheme with a stencil construction allowing to reduce even further the numerical dissipation.The stencil is shifted away from troubles(shocks,discontinuities,etc.)leading to less oscillating polynomial reconstructions.Experimented on linear,Burgers',and Euler equations,we demonstrate that the adaptive stencil technique manages to retrieve smooth solutions with optimal order of accuracy but also irregular ones without spurious oscillations.Moreover,we numerically show that the approach allows to reduce the dissipation still maintaining the essentially non-oscillatory behavior.
文摘One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions.
基金supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA27030100)National Natural Science Foundation of China(72293575, 11832001)。
文摘The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.
基金Project supported by the National Natural Science Foundation of China(No.11571240)the Shenzhen Natural Science Fund of China(the Stable Support Plan Program No.20220805175116001)。
文摘In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and linear friction.The latter arises from the influence of the Hartmann bottom boundary layer in a three-dimensional(3D)MHD experiment in a square bottomed cell.The basic flow in this fluid system is a square eddy flow exhibiting a network of N~2 vortices rotating alternately in clockwise and anticlockwise directions.When N is odd,the instability of the flow gives rise to secondary steady-state flows and secondary time-periodic flows,exhibiting similar characteristics to those observed when N=3.For this reason,this study focuses on the instability of the square eddy flow of nine vortices.It is shown that there exist eight bi-critical values corresponding to the existence of eight neutral eigenfunction spaces.Especially,there exist non-real neutral eigenfunctions,which produce secondary time-periodic flows exhibiting vortices merging in an oscillatory manner.This Hopf bifurcation phenomenon has not been observed in earlier investigations.
文摘Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
基金funded by the National Natural Science Foundation of China under the project“Research on Urban Spatial Coupling Mechanism Between Urban Epidemic Spreading and Vulnerability and Planning Response in Chengdu-Chongqing Area”(Grant No.52078423)the Major Program of Sichuan Provincial Scientific Research under the Project“Research and Demonstration of Resilient Collaborative Planning and Design for Park Cities”(Grant No.2020YFS0054)the Sichuan Provincial Science and Technology Innovation Platform and Talent Plan"Research on the Construction and Development Strategies of Several Major Infrastructure Systems for New Smart Cities"(Grant No.2022JDR0356).
文摘Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarizes four concepts based on the research on post-disaster reconstruction both domestically and internationally,as well as the recovery and reconstruction of cultural heritage.Through a field survey of traditional villages in the Ms 6.8 Luding earthquake-stricken area,it is found that there are problems such as insufficient awareness of heritage value,misalignment of scientific reconstruction technology,and insufficient protection of reconstruction elements during the reconstruction process.Traditional villages face the risk of declining or even loss of heritage value.In order to effectively protect traditional villages and inherit the carrier of regional culture,four targeted reconstruction response strategies are proposed,i.e.,to"establish special planning for traditional village preservation","emphasize recovery of the authenticity of village heritage","ensure elements for village heritage recovery"and"promote the activation and utilization of village heritage",based on the problems discovered during the survey and the four concepts summarized in the research on post-disaster reconstruction of traditional villages.The research results hope to provide useful reference for ancient cultural areas affected by earthquakes on how to protect cultural heritage during the post-disaster reconstruction process.
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
文摘Neuropathy is nerve damage that can cause chronic neuropathic pain, which is challenging to cure and has a significant financial burden. Exercise therapies, including High-Intensity Interval Training (HIIT) and steady-state cardio, are being explored as potential treatments for neuropathic pain. This systematic review compares the effectiveness of HIIT and steady-state cardio for improving function in neurological patients. This article provides an overview of the systematic review conducted on the effects of exercise on neuropathic patients, with a focus on high-intensity interval training (HIIT) and steady-state cardio. The authors conducted a comprehensive search of various databases, identified relevant studies based on predetermined inclusion criteria, and used the EPPI automation application to process the data. The final selection of studies was based on validity and relevance, with redundant articles removed. The article reviews four studies that compare high-intensity interval training (HIIT) to moderate-intensity continuous training (MICT) on various health outcomes. The studies found that HIIT can improve aerobic fitness, cerebral blood flow, and brain function in stroke patients;lower diastolic blood pressure more than MICT and improve insulin sensitivity and skeletal muscle mitochondrial content in obese individuals, potentially helping with the prevention and management of type 2 diabetes. In people with multiple sclerosis, acute exercise can decrease the plasma neurofilament light chain while increasing the flow of the kynurenine pathway. The available clinical and preclinical data suggest that further study on high-intensity interval training (HIIT) and its potential to alleviate neuropathic pain is justified. Randomized controlled trials are needed to investigate the type, intensity, frequency, and duration of exercise, which could lead to consensus and specific HIIT-based advice for patients with neuropathies.
基金the National Key Research and Development Program of China(2021YFB1006200)Major Science and Technology Project of Henan Province in China(221100211200).Grant was received by S.Li.
文摘Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation.Additionally,the reliability of guidance from static teachers diminishes as target models become more robust.This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation(LDAS&ET-AD).Firstly,a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation.A strategy model is introduced to produce attack strategies that enable adversarial examples(AEs)to be created in areas where the target model significantly diverges from the teachers by competing with the target model in minimizing or maximizing the AD loss.Secondly,a teacher evolution strategy is introduced to enhance the reliability and effectiveness of knowledge in improving the generalization performance of the target model.By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,the impact of distillation from each training sample and AE on the target model’s generalization and robustness abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly.Experiments evaluate the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.The experimental results demonstrate that the proposed method achieves a robust precision of 45.39%and 42.63%against AutoAttack(AA)on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2,respectively,marking an improvement of 2.31%and 3.49%over the baseline method.In comparison to state-of-the-art adversarial defense techniques,our method surpasses Introspective Adversarial Distillation,the top-performing method in terms of robustness under AA attack for the CIFAR-10 dataset,with enhancements of 1.40%and 1.43%for ResNet-18 and MobileNet-V2,respectively.These findings demonstrate the effectiveness of our proposed method in enhancing the robustness of deep learning networks(DNNs)against prevalent adversarial attacks when compared to other competing methods.In conclusion,LDAS&ET-AD provides reliable and informative soft labels to one of the most promising defense methods,AT,alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD techniques.We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps ensure a more secure and dependable future for artificial intelligence systems.
基金supported by CAMS Innovation Fund for Medical Sciences(CIFMS,2021-I2M-C&TB-030).
文摘It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,which has created a new era for ASCVD therapy.However,statin intolerance is not clinically uncommon,which there are several issues with confu-sion and misunderstandings.Hence,a file named Chinese Expert Consensus on the Diagnosis and Management Strategy of Pa-tients With Statin Intolerance,like a navigator,has recently been published written by a team of experts from the Cardiovascular Metabolic Medicine Professional Committee,Expert Committee of the National Center for Cardiovascular Diseases aiming to en-hance the standardized clinical application of statins and improve the prevention and clinical outcome.In this article,author briefly summarized the key points of above consensus in order to helping to comprehending the content of the consensus sugges-tions.
文摘Background: Helicobacter pylori (Hp) infection is the most widespread bacterial infection in the world. The infection is generally acquired in childhood, but can persist into adulthood. Eradication therapy has undergone several modifications. The aim of this study was to evaluate the different therapeutic strategies used in the eradication of Helicobacter pylori infection in the Centre Hospitalier Universitaire La Reference Nationale of N’Djaména. Patients and Methods: This was a prospective, descriptive analytical study spread over one year, from September 2021 to September 2022. Patients at least 15 years of age presenting with dyspeptic symptoms, seen consecutively in a hepato-gastroenterology consultation and with a positive stool test for H. pylori infection, were included in the study. Equally, 1/3 of patients were treated with dual or triple therapy. The remaining third received quadritherapy. Results: A total of 268 patients were included in the study (mean age 38.40 ± 14.66 with extremes of 16 and 80 years). Males predominated in 58% of cases. Overall therapeutic efficacy was 88.9%. According to different therapeutic strategies, efficacy was 90.75% for dual therapy with PPI (Rabeprazole) and Amoxicillin. On the other hand, efficacy was 87% and 88.88% for PPI-based triple therapy and dual antibiotic therapy, and for PPI-based quadruple therapy and triple antibiotic therapy. Conclusion: H. pylori infection is a common disease in Chad. Dual therapy with rabeprazole combined with a high dose of amoxicillin over a period of at least two weeks showed similar if not better efficacy than triple or quadruple therapy.
基金supported by the National Natural Science Foundation of China(72171219,72201264,71921001,71801206,71971203)the Fundamental Research Funds for the Central Universities(WK2040000027)+1 种基金the New Liberal Arts Fund of USTC(FSSF-A-230104)the Four Batch Talent Programs of China.
文摘The booming live-streaming commerce has significantly changed the traditional e-commerce model,thus attracting much attention from both industry and academia.In recent years,an increasing number of scholars have applied analytical models to explore live-streaming strategies for firms in different scenarios.However,the previous literature mainly considers monopolists,while in the real world,competition is not rare.To fill this gap between the literature and practical observations,this paper applies a game theoretical model to study live-streaming adoption and pricing strategy for firms under competitive environments.The results show that,for competitive firms,the equilibrium strategy depends on the relation between the commission rate and the intensity of the market expansion effect.Additionally,compared to the case in which no firm adopts live-streaming,competitive firms do not always benefit from the adoption of live-streaming selling.The paper also shows that competition plays a negative role in inducing a firm to adopt live-streaming.