期刊文献+
共找到7,148篇文章
< 1 2 250 >
每页显示 20 50 100
A Multiscale Reliability-Based Design Optimization Method for Carbon-Fiber-Reinforced Composite Drive Shafts
1
作者 Huile Zhang Shikang Li +3 位作者 Yurui Wu Pengpeng Zhi Wei Wang Zhonglai Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1975-1996,共22页
Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta... Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components. 展开更多
关键词 Multiscale reliability-based design optimization carbon-fabric-reinforced composite drive shaft
下载PDF
Study of the Ballistic Impact Behavior of Protective Multi-Layer Composite Armor
2
作者 Dongsheng Jia Yingjie Xu +2 位作者 Liangdi Wang Jihong Zhu Weihong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期171-199,共29页
The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different ... The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor. 展开更多
关键词 Protective armor composite bionic design structure design mechanical property
下载PDF
A strategy for lightweight designing of a railway vehicle car body including composite material and dynamic structural optimization
3
作者 Alessio Cascino Enrico Meli Andrea Rindi 《Railway Engineering Science》 2023年第4期340-350,共11页
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat... Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body. 展开更多
关键词 Structural dynamic optimization Car body lightweight design Railway vehicle dynamics Railway car body engineering Railway vehicle design composite materials
下载PDF
Plackett-Burman和Central Composite Design试验设计法优化石榴皮中熊果酸的SFE-CO_2萃取工艺 被引量:7
4
作者 王占一 金美花 +3 位作者 王玉海 张立华 毕海丹 李卓瓦 《中药材》 CAS CSCD 北大核心 2015年第3期610-614,共5页
目的:探讨应用SFE-CO2萃取石榴皮中熊果酸的最佳工艺。方法:以熊果酸得率为考察指标,通过Plackett-Burman(PB)试验设计筛选影响熊果酸得率的显著性因素,最陡爬坡试验逼近熊果酸得率最大区域,Central Composite Design(CCD)试验设计对显... 目的:探讨应用SFE-CO2萃取石榴皮中熊果酸的最佳工艺。方法:以熊果酸得率为考察指标,通过Plackett-Burman(PB)试验设计筛选影响熊果酸得率的显著性因素,最陡爬坡试验逼近熊果酸得率最大区域,Central Composite Design(CCD)试验设计对显著性因素进行响应面优化得到影响熊果酸得率的二阶数学模型,进而得出最佳工艺条件。结果:SFE-CO2萃取石榴皮中熊果酸的最佳工艺条件为:萃取温度46.29℃,萃取时间91.6 min,萃取压力34.49 MPa,在此条件下,验证试验测得熊果酸得率为12.508 mg/g,与模型预测值12.645 mg/g接近。结论:将PB试验和CCD试验设计联合应用于优化石榴皮中熊果酸SFE-CO2萃取工艺,筛选结果具有统计学意义,工艺操作具有可行性。 展开更多
关键词 石榴皮 SFE-CO2萃取 熊果酸 PLACKETT-BURMAN CENTRAL composite design
下载PDF
RELIABILITY-BASED DESIGN OF COMPOSITES UNDER THE MIXED UNCERTAINTIES AND THE OPTIMIZATION ALGORITHM 被引量:6
5
作者 Rui Ge Jianqiao Chen Junhong Wei 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第1期19-27,共9页
This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimizat... This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites. 展开更多
关键词 laminated composites inverse reliability analysis reliability-based design sequential single-loop optimization method PSO
下载PDF
Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding:A Review 被引量:17
6
作者 Chaobo Liang Zhoujie Gu +3 位作者 Yali Zhang Zhonglei Ma Hua Qiu Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期322-350,共29页
With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materia... With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected. 展开更多
关键词 Polymer matrix composites Electromagnetic interference shielding Structural design
下载PDF
ROBUST OPTIMUM DESIGN OF LAMINATED COMPOSITE PLATES 被引量:4
7
作者 WangXiangyang ChenJianqiao 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第4期315-322,共8页
A last-ply failure (LPF) analysis method for laminated composite plates is incorpo- rated into the ?nite element code-ANSYS, and a robust optimum design method is presented. The composite structure is analyzed... A last-ply failure (LPF) analysis method for laminated composite plates is incorpo- rated into the ?nite element code-ANSYS, and a robust optimum design method is presented. The composite structure is analyzed by considering both in-plane and out-of-plane loads. For a lamina, two major failure modes are considered: matrix failure and ?ber breakage that are characterized by the proper strength criteria in the literature. When a lamina has failed, the laminate sti?ness is modi?ed to re?ect the damage, and stresses in the structure are re-analyzed. This procedure is repeatedly performed until the whole structure fails and thus the ultimate strength is determined. A structural optimization problem is solved with the ?ber orientation and the lamina thickness as the design variables and the LPF load as the objective. Finally, the robust optimum design method for laminates is presented and discussed. 展开更多
关键词 laminated composites last-ply failure optimum design robust optimization
下载PDF
Hashin Failure Theory Based Damage Assessment Methodology of Composite Tidal Turbine Blades and Implications for the Blade Design 被引量:3
8
作者 YU Guo-qing REN Yi-ru +2 位作者 ZHANG Tian-tian XIAO Wan-shen JIANG Hong-yong 《China Ocean Engineering》 SCIE EI CSCD 2018年第2期216-225,共10页
A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix... A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory(BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions,are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer(CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically. 展开更多
关键词 composites tidal current turbine blade damage assessment tidal energy Hashin failure theory blade design
下载PDF
Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of the lab scale thickener performance 被引量:2
9
作者 Aghajani Shahrivar Alireza Soltani Goharrizi Ataallah +3 位作者 Ebrahimzadeh Gheshlaghi Majid Sarafi Amir Razmirad Mohammad Abdollahi Hadi 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期717-724,共8页
This study discussed the application of response surface methodology(RSM)and central composite rotatable design(CCRD)for modeling and optimization of the influence of some operating variables on the performance of a l... This study discussed the application of response surface methodology(RSM)and central composite rotatable design(CCRD)for modeling and optimization of the influence of some operating variables on the performance of a lab scale thickener for dewatering of tailing in the flotation circuit.Four thickener operating variables,namely feed flowrate,solid percent,flocculant dosage and feedwell height were changed during the tests based on CCRD.The ranges of values of the thickener variables used in the design were a feed flowrate of 9–21 L/min,solid percent of 8%–20%,flocculant dosage of 1.25–4.25 g/t and feedwell height of 16–26 cm.A total of 30 thickening tests were conducted using lab scale thickener on flotation tailing obtained from the Sarcheshmeh copper mine,Iran.The underflow solid percent and bed height were expressed as functions of four operating parameters of thickener.Predicted values were found to be in good agreement with experimental values(R2values of 0.992 and 0.997 for underflow solid percent and bed height,respectively).This study has shown that the RSM and CCRD could effciently be applied for the modeling of thickener for dewatering of flotation tailing. 展开更多
关键词 Response surface methodology Central composite rotatable design MODELING THICKENER
下载PDF
Experimental and numerical study on cyclic behavior of a UHPC-RC composite pier
10
作者 Zeng Xianzhi Zhu Shengchun +2 位作者 Deng Kailai Zhao Canhui Zhou Yiyun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期731-745,共15页
Conventional reinforced concrete piers are vulnerable to severe compressive damage under strong earthquake conditions and are difficult to quickly rehabilitate.This paper develops a new type of composite pier,consisti... Conventional reinforced concrete piers are vulnerable to severe compressive damage under strong earthquake conditions and are difficult to quickly rehabilitate.This paper develops a new type of composite pier,consisting of ultra-high-performance concrete(UHPC)and reinforced concrete(RC).This UHPC-RC composite pier uses a UHPC cover outside of an RC core to achieve a high load-carrying capacity and mitigate compressive damage.An experiment is performed to evaluate the performance of the UHPC-RC composite pier under cyclic deformation.The crack development,ultimate failure modes,and load-carrying capacities of the pier are observed.Because of the extraordinary compressive strength of UHPC,the composite pier suffers little compressive damage under large lateral deformations.The composite pier fails as a result of fracturing of the reinforcement.A numerical model is developed to reproduce the cyclic behavior of the composite pier.On the basis of the verified numerical model,a parametric analysis is used to investigate the influence of the thickness of the UHPC cover and the axial load ratio.Finally,an approach is recommended for designing composite piers. 展开更多
关键词 composite pier UHPC cover cyclic behavior numerical analysis ultimate state design approach
下载PDF
Design optimization of composite egg-shaped submersible pressure hull for minimum buoyancy factor 被引量:2
11
作者 Muhammad Imran Dongyan Shi +2 位作者 Lili Tong Hafiz Muhammad Waqas Muqeem Uddin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1817-1832,共16页
This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of ... This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of the composite egg-shaped pressure hull for manufacturing or further investigations.A total of 15 optimal designs for the composite egg-shaped pressure hull under hydrostatic pressure are obtained in terms of fibers’angles and the number of layers for 5 lay-up arrangements and 3 unidirectional(UD)composite materials.The optimization process is performed utilizing a genetic algorithm and FEA in ANSYS.The minimization of the buoyancy factor eB:FT is selected as the objective for the optimization under constraints on both material failure and buckling strength.Nonlinear buckling analysis is conducted for one optimal design considering both geometric nonlinearity and imperfections.A sensitivity study is also conducted to further investigate the influence of the design variables on the optimal design of the egg-shaped pressure hull. 展开更多
关键词 composite egg-shaped pressure hull design optimization Buoyancy factor Material failure Buckling instability
下载PDF
Variable-stiffness composite cylinder design under combined loadings by using the improved Kriging model 被引量:1
12
作者 Jifan Zhong Yaochen Zheng +1 位作者 Jianqiao Chen Zhao Jing 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第1期201-211,I0006,共12页
The large design freedom of variable-stiffness (VS) composite material presupposes its potential for wide engineering application. Previous research indicates that the design of VS cylindrical structures helps to incr... The large design freedom of variable-stiffness (VS) composite material presupposes its potential for wide engineering application. Previous research indicates that the design of VS cylindrical structures helps to increase the buckling load as compared to quasi-isotropic (QI) cylindrical structures. This paper focuses on the anti-buckling performance of VS cylindrical structures under combined loads and the efficient optimization design method. Two kinds of conditions, bending moment and internal pressure, and bending moment and torque are considered. Influences of the geometrical defects, ovality, on the cylinder's performances are also investigated. To increase the computational efficiency, an adaptive Kriging meta-model is proposed to approximate the structural response of the cylinders. In this improved Kriging model, a mixed updating rule is used in constructing the meta-model. A genetic algorithm (GA) is implemented in the optimization design. The optimal results show that the buckling load of VS cylinders in all cases is greatly increased as compared with a QI cylinder. 展开更多
关键词 Variable-stiffness composite Optimal anti-buckling design Combined loading Ovality KRIGING META-MODEL
下载PDF
Structural design and mechanical performance of composite vascular grafts 被引量:1
13
作者 Abdul Wasy Zia Rong Liu Xinbo Wu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第4期757-785,共29页
This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, an... This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, and hybrid structures along the radial and longitudinal directions;materials and manufacturing techniques, such as tissue engineering and the use of textiles or their combinations;and the corresponding mechanical behaviours of composite vascular grafts in terms of their physical–mechanical properties, especially their stress–strain relationships and elastic recovery. The role of computational studies is discussed with respect to optimizing the geometrics designs and the corresponding mechanical behaviours to satisfy specialized applications, such as those for the aorta and its subparts. Natural and synthetic endothelial materials yield improvements in the mechanical and biological compliance of composite graft surfaces with host arteries. Moreover,the diameter, wall thickness, stiffness, compliance, tensile strength, elasticity, and burst strength of the graft matrix are determined depending on the application and the patient. For composite vascular grafts, hybrid architectures are recommended featuring multiple layers, dimensions, and materials to achieve the desired optimal flexibility and function for complying with user-specific requirements. Rapidly emerging artificial intelligence and big data techniques for diagnostics and the threedimensional(3D) manufacturing of vascular grafts will likely yield highly compliant, subject-specific, long-lasting, and economical vascular grafts in the near-future. 展开更多
关键词 Vascular grafts Surface design Structural design composite materials Mechanical properties
下载PDF
An Expert System in FRP Composite Material Design 被引量:2
14
作者 Qingfen LI, Zhaoxia CUI and Weimin WANG College of Mechanical & Electrical Engineering, Harbin Engineering University, Harbin 150001, China Jianhua GAO Department of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期556-560,共5页
An expert system prototype for fibre-reinforced plastic matrix (FRP) composite material design, ESFRP, has been developed. The system consists of seven main functional parts: a general inference engine, a set of knowl... An expert system prototype for fibre-reinforced plastic matrix (FRP) composite material design, ESFRP, has been developed. The system consists of seven main functional parts: a general inference engine, a set of knowledge bases, a material properties algorithm base, an explanation engine, various data bases, several function models and the user interface. The ESFRP can simulate human experts to make design scheme for fibre-reinforced plastics design, FRP layered plates design and FRP typical engineering components design. It can also predict the material properties and make strength analysis according to the micro and macro mechanics of composite materials. A satisfied result can be gained through the reiterative design. 展开更多
关键词 An Expert System in FRP composite Material design FRP
下载PDF
Extraction Process Optimization of Total Flavonoids from Mallotus apelta Stems by Central Composite Design/Response Surface Method 被引量:2
15
作者 Xiao HUANG Dengfeng ZOU +3 位作者 Ruifen FAN Shuoying GUO Hua ZHU Aize XIE 《Medicinal Plant》 2017年第5期54-57,共4页
[Objectives] To optimize the extraction process of total flavonoids in stems of Mallotus apelta. [Methods]On the basis of singlefactor test,with volume fraction of ethanol,extraction time and ratio of solvent as indep... [Objectives] To optimize the extraction process of total flavonoids in stems of Mallotus apelta. [Methods]On the basis of singlefactor test,with volume fraction of ethanol,extraction time and ratio of solvent as independent variables,the content of total flavonoids as dependent variables,the completely secondary response surface regression fitting was conducted on the independent and dependent variables,and the Response Surface Method was used to optimize the optimum extraction process of total flavonoids in Mallotus apelta stems and predict the optimum process. [Results] The optimum extraction process of total flavonoids in Mallotus apelta was determined as follows: ethanol concentration of 71. 5%; extraction time of 154. 6 min; solid-liquid ratio of 1∶19. 2; total flavonoids content of 7. 060 mg/g; fitted binomial squared correlation coefficient R^2= 0. 8751.[Conclusions]Composite Design/Response Surface Method could be used in the extraction process optimization of total flavonoids in Mallotus apelta stems,the mathematical model established had high prediction accuracy,the method was simple and operability was good. 展开更多
关键词 CENTRAL composite design/Response Surface Method Mallotus apelta TOTAL FLAVONOIDS
下载PDF
Calibration of Discrete Element Heat Transfer Parameters by Central Composite Design 被引量:1
16
作者 Zongquan DENG Jinsheng CUI +1 位作者 Xuyan HOU Shengyuan JIANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期419-427,共9页
The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibratio... The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibration for granular heat transfer with the DEM is studied. The heat transfer in granular assemblies is simulated with DEM, and the effective thermal conductivity (ETC) of these granular assemblies is measured with the transient method in simulations. The measurement testbed is designed to test the ETC of the granular assemblies under normal pressure and a vacuum based on the steady method. Central composite design (CCD) is used to simulate the impact of the DEM parameters on the ETC of granular assemblies, and the heat transfer parameters are calibrated and compared with experimental data. The results show that, within the scope of the considered parameters, the ETC of the granular assemblies increases with an increasing particle thermal conductivity and decreases with an increasing particle shear modulus and particle diameter. The particle thermal conductivity has the greatest impact on the ETC of granular assemblies followed by the particle shear modulus and then the particle diameter. The calibration results show good agreement with the experimental results. The error is less than 4%, which is within a reasonable range for the scope of the CCD parameters. The proposed research provides high efficiency and high accuracy parameter calibration for granular heat transfer in DEM. 展开更多
关键词 Granular assembly · Parameter calibration · Effective thermal conductivity (ETC) · Discrete element method (DEM) · Central composite design (CCD) · Vacuum
下载PDF
Analysis of Heat Transfer Performance of Oscillating Heat Pipes Based on a Central Composite Design 被引量:12
17
作者 马永锡 张红 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第2期223-228,共6页
Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and ... Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and non-linear. In this paper, the effects of charging ratio, inclination angle, and heat input and their interaction effects on heat transfer performance of a looped copper-water OHP are analyzed. First, suppose that the relationship between the response and the variables approximates a second-order model. And use the central composite design to arrange the ex- periment. Then, the method of least squares is used to estimate the parameters in the second-order model. Finally, multi- variate variance analysis is used to analyze the model. The results show that the assumption is right, that is to say, the re- lationship is well modeled by a second-order function. Among the three main effect variables, the effect of inclination angle is the most significant, but their interaction effects are not significant. In the range of the considered factors, both the optimum charging ratio and the optimum inclination angle increase as the heating water flow rate increases. 展开更多
关键词 基于中心复合设计 振荡热管 传热 性能 方差分析
下载PDF
A MICROMECHANICS ANALYSIS FOR THE MICROSTRUCTURE DESIGN OF A TWO-PHASE PSEUDOELASTIC COMPOSITE
18
作者 孙庆平 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第2期162-168,共7页
A micromechanics analysis on the possibility of designing a two-phase pseudoelastic composite is made for the case where ductile transformable shape mem- ory alloy plastic particles are imbedded coherently in an elast... A micromechanics analysis on the possibility of designing a two-phase pseudoelastic composite is made for the case where ductile transformable shape mem- ory alloy plastic particles are imbedded coherently in an elastic matrix. It is demon- strated that a pseudoelastic stress-strain loop in a macroscopic loading-unloading cy- cle can be obtained by microscopically stress induced forward and reverse martensitic transformations in the SMA particles. The relation between the macroscopic stress- strain response and the material parameters of the constituents of this composite is quantified through the micromechanics calculations, which reveals that the best duc- tility and thus the greatest energy absorption capacity of this novel microstructure can be obtained by the optimum material design. 展开更多
关键词 composite optimum material design two-phase pseudoelastic composite microstructure design
下载PDF
OPTIMUM DESIGN OF ADHESIVE BONDING OFRESIN-BASE COMPOSITES
19
作者 吴妙生 周祝林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第11期0-0,0-0+0,共5页
In this paper, based on the experimental and theoretical analysis, the primciple ofoptimum design for single lap joint of resin matrix, together with omposites ispresented the adhesive selection, the bonding length an... In this paper, based on the experimental and theoretical analysis, the primciple ofoptimum design for single lap joint of resin matrix, together with omposites ispresented the adhesive selection, the bonding length and the .hickness of the adhesivelayer and the adherend design. It is shown that by the optinum design the strength ofadhesive bonding is increased while the weight of the composites products is decreasedso that the quality of the products is improved. 展开更多
关键词 ADHESION compositeS optimum design fiber shear
下载PDF
Modeling of biodiesel production: Performance comparison of Box–Behnken, face central composite and full factorial design
20
作者 Vlada B.Veljkovic Ana V. Velickovic +1 位作者 Jelena M. Avramovic Olivera S. Stamenkovic 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1690-1698,共9页
The performances of the response surface methodology(RSM)in connection with the Box–Behnken,face central composite or full factorial design(BBD,FCCD or FFD,respectively)were compared for the use in modeling of the Na... The performances of the response surface methodology(RSM)in connection with the Box–Behnken,face central composite or full factorial design(BBD,FCCD or FFD,respectively)were compared for the use in modeling of the NaOH-catalyzed sunflower oil ethanolysis.The influence of temperature,catalyst loading,and ethanol-to-oil molar ratio(EOMR)on fatty acid ethyl esters(FAEE)content was evaluated.All three multivariate strategies were efficient in the statistical modeling and optimization of the influential process variables but BBD and FCCD realization involved less number of experiments,generating smaller costs,requiring less work and consuming shorter time than the corresponding FFD.All three designs resulted in the same optimal catalyst loading(1.25%of oil)and EOMR(12:1).The reduced two-factorinteraction(2 FI)models based on the BBD and FCCD defined a range of optimal reaction temperature(25℃–75℃)and 25℃,respectively while the same model based on the 33 FFD appointed 75℃.The predicted FAEE content of about 97%–98.0%was close to the experimentally obtained FAEE content of about 97.0%–97.6%under the optimal reaction conditions.Therefore,the simpler BBD or FCCD might successfully be applied for statistical modeling of biodiesel production processes instead of the more extensive,more laborious and more expensive FFD. 展开更多
关键词 BIODIESEL Box-Behnken design Model reduction Face central composite design Full factorial design OPTIMIZATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部