Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor...Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor will enter the reactor core, resulting in a two-phase flow of heavy liquid metal and water vapor in fuel assemblies. The thermal-hydraulic problems caused by the SGTR accident may seriously threaten reactor core's safety performance. In this paper, the open-source CFD calculation software OpenFOAM was used to encapsulate the improved Euler method into the self-developed solver LBEsteamEulerFoam. By changing different heating boundary conditions and inlet coolant types, the two-phase flow in the fuel assembly with different inlet gas content was simulated under various accident conditions. The calculation results show that the water vapor may accumulate in edge and corner channels. With the increase in inlet water vapor content, outlet coolant velocity increases gradually. When the inlet water vapor content is more than 15%, the outlet coolant temperature rises sharply with strong temperature fluctuation. When the inlet water vapor content is in the range of 5–20%, the upper part of the fuel assembly will gradually accumulate to form large bubbles. Compared with the VOF method, Euler method has higher computational efficiency. However, Euler method may cause an underestimation of the void fraction, so it still needs to be calibrated with future experimental data of the two-phase flow in fuel assembly.展开更多
Motivated to understand the pressure-buildup characteristics in a circumstance of a water droplet immerged inside a heavy liquid metal pool,which is a key phenomenon during a Steam Generator Tube Rupture accident of L...Motivated to understand the pressure-buildup characteristics in a circumstance of a water droplet immerged inside a heavy liquid metal pool,which is a key phenomenon during a Steam Generator Tube Rupture accident of Lead-cooled Fast Reactor,many experiments have been conducted by injecting water lumps into a molten lead pool at Sun Yat-sen University.In order to deepen the understanding of the influence of melt material,this lead experiment was compared with a Lead-Bismuth-Eutectic(LBE)experiment in the literature.For both experiments,a steam explosion occurred in a small part of the experi-mental runs,which generally leads to strengthened pressure buildup.Regarding the non-explosion experimental cases,the impact of all parameters employed in lead experiments(i.e.,water lump volume,water lump shape,molten pool depth,and temperature of water and melt)on the pressure buildup is non-negligible and similar to that in our previous experiments using LBE.Notably,limited pressure buildup with an increase in water lump volume was also observed.A slightly more violent pressure buildup tends to appear in the lead experiments than in the LBE experiments under the same experimental conditions,which may be due to the higher thermal conductivity of lead than of LBE.In a few experimental runs with a relatively low melt temperature close to the melting point of lead,local solidification of liquid lead was observed,restricting pressure buildup.For the lead and LBE experiments,the calculated melt kinetic energy conversion efficiencyηhas a relatively small value(not exceeding 1.6%),and theηvalues have an overall positive correlation with the impulse on the molten pool.展开更多
基金supported partly by the Ministry of Science and Technology of the People's Republic of China (No. 2020YFB1902100)the Shanghai Municipal Commission of Economy and Informatization (No. GYQJ-2018-2-02)。
文摘Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor will enter the reactor core, resulting in a two-phase flow of heavy liquid metal and water vapor in fuel assemblies. The thermal-hydraulic problems caused by the SGTR accident may seriously threaten reactor core's safety performance. In this paper, the open-source CFD calculation software OpenFOAM was used to encapsulate the improved Euler method into the self-developed solver LBEsteamEulerFoam. By changing different heating boundary conditions and inlet coolant types, the two-phase flow in the fuel assembly with different inlet gas content was simulated under various accident conditions. The calculation results show that the water vapor may accumulate in edge and corner channels. With the increase in inlet water vapor content, outlet coolant velocity increases gradually. When the inlet water vapor content is more than 15%, the outlet coolant temperature rises sharply with strong temperature fluctuation. When the inlet water vapor content is in the range of 5–20%, the upper part of the fuel assembly will gradually accumulate to form large bubbles. Compared with the VOF method, Euler method has higher computational efficiency. However, Euler method may cause an underestimation of the void fraction, so it still needs to be calibrated with future experimental data of the two-phase flow in fuel assembly.
基金supported by the Basic and Applied Basic Research Foundation of Guangdong Province (Nos.2021A1515010343 and 2022A1515011582)the Science and Technology Program of Guangdong Province (Nos.2021A0505030026 and 2022A0505050029).
文摘Motivated to understand the pressure-buildup characteristics in a circumstance of a water droplet immerged inside a heavy liquid metal pool,which is a key phenomenon during a Steam Generator Tube Rupture accident of Lead-cooled Fast Reactor,many experiments have been conducted by injecting water lumps into a molten lead pool at Sun Yat-sen University.In order to deepen the understanding of the influence of melt material,this lead experiment was compared with a Lead-Bismuth-Eutectic(LBE)experiment in the literature.For both experiments,a steam explosion occurred in a small part of the experi-mental runs,which generally leads to strengthened pressure buildup.Regarding the non-explosion experimental cases,the impact of all parameters employed in lead experiments(i.e.,water lump volume,water lump shape,molten pool depth,and temperature of water and melt)on the pressure buildup is non-negligible and similar to that in our previous experiments using LBE.Notably,limited pressure buildup with an increase in water lump volume was also observed.A slightly more violent pressure buildup tends to appear in the lead experiments than in the LBE experiments under the same experimental conditions,which may be due to the higher thermal conductivity of lead than of LBE.In a few experimental runs with a relatively low melt temperature close to the melting point of lead,local solidification of liquid lead was observed,restricting pressure buildup.For the lead and LBE experiments,the calculated melt kinetic energy conversion efficiencyηhas a relatively small value(not exceeding 1.6%),and theηvalues have an overall positive correlation with the impulse on the molten pool.