This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs. It is possible to set special pac...This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs. It is possible to set special packers within the long completion horizontal interval to establish an injection zone and a production zone. This method can also be used in steam flooding after steam soak through a horizontal well. Simulation results showed that it was desirable to start steam flooding after six steam soaking cycles and at this time the oil/steam ratio was 0.25 and oil recovery efficiency was 23.48%. Steam flooding performance was affected by separation interval and steam injection rate. Reservoir numerical simulation indicated that maximum oil recovery would be achieved at a separation section of 40-50 m at steam injection rate of 100-180 t/d; and the larger the steam injection rate, the greater the water cut and pressure difference between injection zone and production zone. A steam injection rate of 120 t/d was suitable for steam flooding under practical injection-production conditions. All the results could be useful for the guidance of steam flooding projects.展开更多
A numerical simulation study using the CMG-STAR Simulator was performed to compare the performance of the newly developed process (VWSAGD) utilizing vertical wells to enhance heavy oil recovery during steam assisted g...A numerical simulation study using the CMG-STAR Simulator was performed to compare the performance of the newly developed process (VWSAGD) utilizing vertical wells to enhance heavy oil recovery during steam assisted gravity drainage against the conventional steam assisted gravity drainage process which utilized horizontal wells (HWSAGD) under the same operating conditions. Two identical reservoir models were simulated for the two processes using 3-Dimensional, black heavy oil model (14° API). Each reservoir type consists of 49 × 49 × 20 grid blocks on a 5-acre model, which incorporated a typical heavy oil reservoir rock and fluid properties taken from the SPE case study, stspe001.dat (CMG 2015 release). A sensitivity analysis for both processes was performed for the grid density, soaking time, steam quality, bottom hole producing pressure, steam injection rate, reservoir thickness, reservoir area, and horizontal to vertical permeability anisotropy. More preferable reservoir conditions are those such as high horizontal to vertical permeability ratio, thick reservoir oil zones, as well as improved reservoir recovery for the VWSAGD process. Under unfavorable conditions such as thin reservoir oil zones, an improved reservoir recovery response was limited for the VWSAGD process and could be uneconomical in real field cases. Finally, the simulation results from this study include cumulative recoveries, Steam oil ratios, produced water-oil ratios, pressure and temperature distributions, and production rates. In addition, the results from this study have shown that the new VWSAGD process is more favorable than the conventional HWSAGD process.展开更多
The development of steam chamber can be used to evaluate steam-assisted gravity drainage(SAGD) performance. The velocity of steam chamber expanding is the key parameter for evaluating the development of steam chamber....The development of steam chamber can be used to evaluate steam-assisted gravity drainage(SAGD) performance. The velocity of steam chamber expanding is the key parameter for evaluating the development of steam chamber. Based on SAGD technology theory and heat transfer theory, two calculation model methods, observation well temperature method and steam chamber edge method for estimating the horizontal expanding velocity of steam chamber, were presented. Through analyzing the monitoring data and numerical simulation results of a typical super heavy oil block developed by SAGD in Fengcheng oilfield in Xinjiang, NW China, the development patterns of steam chamber and temperature variation law in the observation well at different stages are determined. The observed temperature data was used to calculate steam chamber expanding velocity. The calculated chamber velocity at different time was applied to predict the temperature distribution of oil drainage zone at the edge of steam chamber and SAGD oil rate. The results indicate that temperature function of high temperature zone in the observation well temperature curve has a linear relationship with measuring depth.The characteristic section can be used to calculate key parameters such as the angle of the drainage interface, expanding edge and velocity of steam chamber. The field production data verify that the results of the two proposed methods of steam chamber growth are reliable and practical, which can provide theoretical support for the efficient development of SAGD.展开更多
A novel model for dynamic temperature distribution in heavy oil reservoirs is derived from the principle of energy conservation.A difference equation of the model is firstly separated into radial and axial difference ...A novel model for dynamic temperature distribution in heavy oil reservoirs is derived from the principle of energy conservation.A difference equation of the model is firstly separated into radial and axial difference equations and then integrated.Taking into account the coupling of temperature and pressure in the reservoir and wellbore,models for calculating distributions of the reservoir temperature,reservoir pressure,and water saturation are also developed.The steam injected into the wellbore has a more significant effect on reservoir pressure than on reservoir temperature.Calculation results indicate that the reservoir temperature and pressure decrease exponentially with increasing distance from the horizontal wellbore.The radial variation range of the pressure field induced by steam is twice as wide as that of the temperature field,and both variation ranges decrease from the wellbore heel to the toe.Variation of water saturation induced by steam is similar to the temperature and pressure fields.The radial variation ranges of the reservoir temperature and pressure increase with steam injection time,but rate of increase diminishes gradually.展开更多
The M block in Liaohe Oilfield uses steam huff and puff coupled with water flooding, and it has entered the middle-later period of oilfield development To keep stable yield, the development mode should be changed. Bas...The M block in Liaohe Oilfield uses steam huff and puff coupled with water flooding, and it has entered the middle-later period of oilfield development To keep stable yield, the development mode should be changed. Based on the geological characteristics in the M block, this paper puts forward two different ways: Horizontal well injects steam to steam drive; Horizontal well as product well when vertical well injects steam. Combined with practical data and using numerical simulation to analysis, the results show that: Horizontal Well injects steam to steam driving is the best way; the recovery percent is as high as 22.72%. This development mode will work no matter in the short run or getting the economic limit rate.展开更多
文摘This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs. It is possible to set special packers within the long completion horizontal interval to establish an injection zone and a production zone. This method can also be used in steam flooding after steam soak through a horizontal well. Simulation results showed that it was desirable to start steam flooding after six steam soaking cycles and at this time the oil/steam ratio was 0.25 and oil recovery efficiency was 23.48%. Steam flooding performance was affected by separation interval and steam injection rate. Reservoir numerical simulation indicated that maximum oil recovery would be achieved at a separation section of 40-50 m at steam injection rate of 100-180 t/d; and the larger the steam injection rate, the greater the water cut and pressure difference between injection zone and production zone. A steam injection rate of 120 t/d was suitable for steam flooding under practical injection-production conditions. All the results could be useful for the guidance of steam flooding projects.
文摘A numerical simulation study using the CMG-STAR Simulator was performed to compare the performance of the newly developed process (VWSAGD) utilizing vertical wells to enhance heavy oil recovery during steam assisted gravity drainage against the conventional steam assisted gravity drainage process which utilized horizontal wells (HWSAGD) under the same operating conditions. Two identical reservoir models were simulated for the two processes using 3-Dimensional, black heavy oil model (14° API). Each reservoir type consists of 49 × 49 × 20 grid blocks on a 5-acre model, which incorporated a typical heavy oil reservoir rock and fluid properties taken from the SPE case study, stspe001.dat (CMG 2015 release). A sensitivity analysis for both processes was performed for the grid density, soaking time, steam quality, bottom hole producing pressure, steam injection rate, reservoir thickness, reservoir area, and horizontal to vertical permeability anisotropy. More preferable reservoir conditions are those such as high horizontal to vertical permeability ratio, thick reservoir oil zones, as well as improved reservoir recovery for the VWSAGD process. Under unfavorable conditions such as thin reservoir oil zones, an improved reservoir recovery response was limited for the VWSAGD process and could be uneconomical in real field cases. Finally, the simulation results from this study include cumulative recoveries, Steam oil ratios, produced water-oil ratios, pressure and temperature distributions, and production rates. In addition, the results from this study have shown that the new VWSAGD process is more favorable than the conventional HWSAGD process.
基金Supported by the China National Science and Technology Major Project(2016ZX05012-002)
文摘The development of steam chamber can be used to evaluate steam-assisted gravity drainage(SAGD) performance. The velocity of steam chamber expanding is the key parameter for evaluating the development of steam chamber. Based on SAGD technology theory and heat transfer theory, two calculation model methods, observation well temperature method and steam chamber edge method for estimating the horizontal expanding velocity of steam chamber, were presented. Through analyzing the monitoring data and numerical simulation results of a typical super heavy oil block developed by SAGD in Fengcheng oilfield in Xinjiang, NW China, the development patterns of steam chamber and temperature variation law in the observation well at different stages are determined. The observed temperature data was used to calculate steam chamber expanding velocity. The calculated chamber velocity at different time was applied to predict the temperature distribution of oil drainage zone at the edge of steam chamber and SAGD oil rate. The results indicate that temperature function of high temperature zone in the observation well temperature curve has a linear relationship with measuring depth.The characteristic section can be used to calculate key parameters such as the angle of the drainage interface, expanding edge and velocity of steam chamber. The field production data verify that the results of the two proposed methods of steam chamber growth are reliable and practical, which can provide theoretical support for the efficient development of SAGD.
文摘A novel model for dynamic temperature distribution in heavy oil reservoirs is derived from the principle of energy conservation.A difference equation of the model is firstly separated into radial and axial difference equations and then integrated.Taking into account the coupling of temperature and pressure in the reservoir and wellbore,models for calculating distributions of the reservoir temperature,reservoir pressure,and water saturation are also developed.The steam injected into the wellbore has a more significant effect on reservoir pressure than on reservoir temperature.Calculation results indicate that the reservoir temperature and pressure decrease exponentially with increasing distance from the horizontal wellbore.The radial variation range of the pressure field induced by steam is twice as wide as that of the temperature field,and both variation ranges decrease from the wellbore heel to the toe.Variation of water saturation induced by steam is similar to the temperature and pressure fields.The radial variation ranges of the reservoir temperature and pressure increase with steam injection time,but rate of increase diminishes gradually.
文摘The M block in Liaohe Oilfield uses steam huff and puff coupled with water flooding, and it has entered the middle-later period of oilfield development To keep stable yield, the development mode should be changed. Based on the geological characteristics in the M block, this paper puts forward two different ways: Horizontal well injects steam to steam drive; Horizontal well as product well when vertical well injects steam. Combined with practical data and using numerical simulation to analysis, the results show that: Horizontal Well injects steam to steam driving is the best way; the recovery percent is as high as 22.72%. This development mode will work no matter in the short run or getting the economic limit rate.