This article briefly describes the major patents domestic and the abroad, and the current situation and achievements of FCC stripping technology in China. The developing trend of FCC stripping technology is presented,...This article briefly describes the major patents domestic and the abroad, and the current situation and achievements of FCC stripping technology in China. The developing trend of FCC stripping technology is presented, including further developments of FCC stripper to improve unit performance, combination of the stripper and pre stripper within disengager to form a complete high efficiency FCC stripping system. In addition to high efficiency, simple structure and easiness of installation and maintenance for a new FCC stripper are all of consideration.展开更多
Hydrogen energy became the most significant energy as the current demand gradually starts to increase. Hydrogen energy is an important key solution to tackle the global temperature rise. The key important factor of hy...Hydrogen energy became the most significant energy as the current demand gradually starts to increase. Hydrogen energy is an important key solution to tackle the global temperature rise. The key important factor of hydrogen production is the hydrogen economy. Hydrogen production technologies are commercially available, while some of these technologies are still under development. This paper reviews the hydrogen production technologies from both fossil and non-fossil fuels such as (steam reforming, partial oxidation, auto thermal, pyrolysis, and plasma technology). Additionally, water electrolysis technology was reviewed. Water electrolysis can be combined with the renewable energy to get eco-friendly technology. Currently, the maximum hydrogen fuel productions were registered from the steam reforming, gasification, and partial oxidation technologies using fossil fuels. These technologies have different challenges such as the total energy consumption and carbon emissions to the environment are still too high. A novel non-fossil fuel method [ammonia NH3] for hydrogen production using plasma technology was reviewed. Ammonia decomposition using plasma technology without and with a catalyst to produce pure hydrogen was considered as compared case studies. It was showed that the efficiency of ammonia decomposition using the catalyst was higher than ammonia decomposition without the catalyst. The maximum hydrogen energy efficiency obtained from the developed ammonia decomposition system was 28.3% with a hydrogen purity of 99.99%. The development of ammonia decomposition processes is continues for hydrogen production, and it will likely become commercial and be used as a pure hydrogen energy source.展开更多
【Objective】To optimize the steam explosion process condition for extracting polysaccharides from Pseudostellaria heterophylla.【Method】The effects of steam pressure,pressure-maintaining time and material moisture c...【Objective】To optimize the steam explosion process condition for extracting polysaccharides from Pseudostellaria heterophylla.【Method】The effects of steam pressure,pressure-maintaining time and material moisture content on the extraction of polysaccharides from Pseudostellaria heterophylla were studied by response surface methodology based on Box-Behnken design.【Result】The findings showed that each factor could significantly affect the test index,and the optimum condition was as follows:steam pressure 1.50 Mpa,pressuremaintaining time 46 s and material moisture content 46%.Under this condition,the verified experimental value of polysaccharides from Pseudostellaria heterophylla was 39.32%,indicating a relative standard deviation of 2.73%from the predictive value.Meanwhile,scanning electron microcopy(SEM)images showed that the surface physical structure of Pseudostellaria heterophylla was irregularly broken and cracked,which means the physical structure of Pseudostellaria heterophylla was changed and destroyed at the cellular level.【Conclusion】This experiment provides a new approach for the extraction of polysaccharides from Pseudostellaria heterophylla,as well as a reference for the resource utilization of Pseudostellaria heterophylla.展开更多
文摘This article briefly describes the major patents domestic and the abroad, and the current situation and achievements of FCC stripping technology in China. The developing trend of FCC stripping technology is presented, including further developments of FCC stripper to improve unit performance, combination of the stripper and pre stripper within disengager to form a complete high efficiency FCC stripping system. In addition to high efficiency, simple structure and easiness of installation and maintenance for a new FCC stripper are all of consideration.
文摘Hydrogen energy became the most significant energy as the current demand gradually starts to increase. Hydrogen energy is an important key solution to tackle the global temperature rise. The key important factor of hydrogen production is the hydrogen economy. Hydrogen production technologies are commercially available, while some of these technologies are still under development. This paper reviews the hydrogen production technologies from both fossil and non-fossil fuels such as (steam reforming, partial oxidation, auto thermal, pyrolysis, and plasma technology). Additionally, water electrolysis technology was reviewed. Water electrolysis can be combined with the renewable energy to get eco-friendly technology. Currently, the maximum hydrogen fuel productions were registered from the steam reforming, gasification, and partial oxidation technologies using fossil fuels. These technologies have different challenges such as the total energy consumption and carbon emissions to the environment are still too high. A novel non-fossil fuel method [ammonia NH3] for hydrogen production using plasma technology was reviewed. Ammonia decomposition using plasma technology without and with a catalyst to produce pure hydrogen was considered as compared case studies. It was showed that the efficiency of ammonia decomposition using the catalyst was higher than ammonia decomposition without the catalyst. The maximum hydrogen energy efficiency obtained from the developed ammonia decomposition system was 28.3% with a hydrogen purity of 99.99%. The development of ammonia decomposition processes is continues for hydrogen production, and it will likely become commercial and be used as a pure hydrogen energy source.
文摘【Objective】To optimize the steam explosion process condition for extracting polysaccharides from Pseudostellaria heterophylla.【Method】The effects of steam pressure,pressure-maintaining time and material moisture content on the extraction of polysaccharides from Pseudostellaria heterophylla were studied by response surface methodology based on Box-Behnken design.【Result】The findings showed that each factor could significantly affect the test index,and the optimum condition was as follows:steam pressure 1.50 Mpa,pressuremaintaining time 46 s and material moisture content 46%.Under this condition,the verified experimental value of polysaccharides from Pseudostellaria heterophylla was 39.32%,indicating a relative standard deviation of 2.73%from the predictive value.Meanwhile,scanning electron microcopy(SEM)images showed that the surface physical structure of Pseudostellaria heterophylla was irregularly broken and cracked,which means the physical structure of Pseudostellaria heterophylla was changed and destroyed at the cellular level.【Conclusion】This experiment provides a new approach for the extraction of polysaccharides from Pseudostellaria heterophylla,as well as a reference for the resource utilization of Pseudostellaria heterophylla.