Numerical simulation of complex systems and components by computers is a fundamental phase of any modern engineering activity. The traditional methods of simulation typically entail long, iterative processes which lea...Numerical simulation of complex systems and components by computers is a fundamental phase of any modern engineering activity. The traditional methods of simulation typically entail long, iterative processes which lead to large simulation times, often exceeding transient real time. Artificial neural networks (ANNs) may be advantageous in this context, the main advantage being the speed of computation, the capability of generalizing from the few examples, robustness to noisy and partially incomplete data and the capability of performing empirical input-output mapping without complete knowledge of underlying physics. In this paper, the simulation of steam generator is considered as an example to show the potentialities of this tool. The data required for training and testing the ANN is taken from the steam generator at Abott Power Plant, Champaign (USA). The total number of samples is 9600 which are taken at a sampling time of three seconds. The performance of boiler (drum pressure, steam flow rate) has been verified and tested using ANN, under the changes in fuel flow rate, air flow rate and load disturbance. Using ANN, input-output mapping is done and it is observed that ANN allows a good reproduction of non-linear behaviors of inputs and outputs.展开更多
In Middle East region, where there are plentiful amounts of solar radiation and great desert areas, solar energy can play a potential role in replacing conventional fuel-operated electricity generation methods with a ...In Middle East region, where there are plentiful amounts of solar radiation and great desert areas, solar energy can play a potential role in replacing conventional fuel-operated electricity generation methods with a cost-effective, sustainable solution. This paper presents a feasibility study of a low-cost solar energy steam generator for rural areas electrification. The proposed system is based on the use of trough concentrator which converts solar radiation into thermal energy in its focal line (where a receiver pipe is installed with a fluid flowing in its interior). The aim of the paper is to predict the feasibility and potential for steam generation using a stand-alone solar concentrator with a small dimension for domestic and small-scale electricity generation. The study presented here is based on modelling of the system to determine the points at which the system is expected to produce sufficient steam energy at the tube outlet to drive a steam engine for producing electricity. Results are presented in graphical forms to show the operating points and the effect of changing selected input parameters on the behavior of the system in order to set some limits (boundaries) for such parameters. Results show that among the three input design parameters selected, the tube diameter is the most dominant parameter that influences steam energy, then the tube length and finally the flow rate of the water passing through the tube. The results of this paper can provide a useful guideline for future simulation and/or physical implementation of the system.展开更多
Boiler fan is the main power consumption device in thermal power units and the induced draft fan accounted for the largest proportion. Reducing the energy consumption rate of induced draft fan is the main path to redu...Boiler fan is the main power consumption device in thermal power units and the induced draft fan accounted for the largest proportion. Reducing the energy consumption rate of induced draft fan is the main path to reduce the power consumption rate of thermal power units. The induce fan driven by small turbine is greatly effective for reducing the power consumption rate and the supply coal consumption rate in large thermal power plant. Take 1000 MW power units for example, the selection of steam source for steam turbine were discussed and economic performance of the unit under different steam source was compared in this paper. The result shows that compared with the motor driven method, there is about 1.6 g/kWh decrease in supply coal consumption rate driven by the fourth stage extraction steam;whereas there is about 2.5 g/kWh decrease in supply coal consumption rate driven by the fifth stage extraction steam.展开更多
文摘Numerical simulation of complex systems and components by computers is a fundamental phase of any modern engineering activity. The traditional methods of simulation typically entail long, iterative processes which lead to large simulation times, often exceeding transient real time. Artificial neural networks (ANNs) may be advantageous in this context, the main advantage being the speed of computation, the capability of generalizing from the few examples, robustness to noisy and partially incomplete data and the capability of performing empirical input-output mapping without complete knowledge of underlying physics. In this paper, the simulation of steam generator is considered as an example to show the potentialities of this tool. The data required for training and testing the ANN is taken from the steam generator at Abott Power Plant, Champaign (USA). The total number of samples is 9600 which are taken at a sampling time of three seconds. The performance of boiler (drum pressure, steam flow rate) has been verified and tested using ANN, under the changes in fuel flow rate, air flow rate and load disturbance. Using ANN, input-output mapping is done and it is observed that ANN allows a good reproduction of non-linear behaviors of inputs and outputs.
文摘In Middle East region, where there are plentiful amounts of solar radiation and great desert areas, solar energy can play a potential role in replacing conventional fuel-operated electricity generation methods with a cost-effective, sustainable solution. This paper presents a feasibility study of a low-cost solar energy steam generator for rural areas electrification. The proposed system is based on the use of trough concentrator which converts solar radiation into thermal energy in its focal line (where a receiver pipe is installed with a fluid flowing in its interior). The aim of the paper is to predict the feasibility and potential for steam generation using a stand-alone solar concentrator with a small dimension for domestic and small-scale electricity generation. The study presented here is based on modelling of the system to determine the points at which the system is expected to produce sufficient steam energy at the tube outlet to drive a steam engine for producing electricity. Results are presented in graphical forms to show the operating points and the effect of changing selected input parameters on the behavior of the system in order to set some limits (boundaries) for such parameters. Results show that among the three input design parameters selected, the tube diameter is the most dominant parameter that influences steam energy, then the tube length and finally the flow rate of the water passing through the tube. The results of this paper can provide a useful guideline for future simulation and/or physical implementation of the system.
文摘Boiler fan is the main power consumption device in thermal power units and the induced draft fan accounted for the largest proportion. Reducing the energy consumption rate of induced draft fan is the main path to reduce the power consumption rate of thermal power units. The induce fan driven by small turbine is greatly effective for reducing the power consumption rate and the supply coal consumption rate in large thermal power plant. Take 1000 MW power units for example, the selection of steam source for steam turbine were discussed and economic performance of the unit under different steam source was compared in this paper. The result shows that compared with the motor driven method, there is about 1.6 g/kWh decrease in supply coal consumption rate driven by the fourth stage extraction steam;whereas there is about 2.5 g/kWh decrease in supply coal consumption rate driven by the fifth stage extraction steam.