The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance ch...The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance change with operation load is important to guide the economic operation of the unit. One simplified Variable Operation Condition Analysis Method was put forward for calculation of the unit output-turbine back pressure characteristics. Based on this method, the choked back pressure for each operation load can be determined. An example was given for a super-critical, regenerative single-shaft, 2-casing with 2-exhaust steam turbine generation unit with air cooled condenser. The calculation result was provided and compared with the result of the unit with wet cooling technology.展开更多
Removal of condensates from wet steam flow in the last stages of steam turbines significantly promotes stage efficiency and prevents erosion of rotors. In this paper, homogeneous spontaneous condensation in transonic ...Removal of condensates from wet steam flow in the last stages of steam turbines significantly promotes stage efficiency and prevents erosion of rotors. In this paper, homogeneous spontaneous condensation in transonic steam flow in the 2-D rotor-tip section of a stage turbine is investigated. Calculated results agree with experimental data reasonably well. On the basis of the above work, a 2-D numerical simulation of wet steam flow in adjacent root sections of a complex steam turbine stage was carded out. Computational results were analyzed and provide insights into effective removal of humidity.展开更多
Water droplets cause corrosion and erosion,condensation loss,and thermal efficiency reduction in low-pressure steam turbines.In this study,multi-objective optimization was carried out using the black-box method throug...Water droplets cause corrosion and erosion,condensation loss,and thermal efficiency reduction in low-pressure steam turbines.In this study,multi-objective optimization was carried out using the black-box method through the automatic linking of a genetic algorithm(GA)and a computational fluid dynamics(CFD)code to find the optimal values of two design variables(inlet stagnation temperature and cascade pressure ratio)to reduce wetness in the last stages of turbines.The wet steam flow numerical model was used to calculate the optimization parameters,including wetness fraction rate,mean droplet radius,erosion rate,condensation loss rate,kinetic energy rate,and mass flow rate.Examining the validation results showed a good agreement between the experimental data and the numerical outcomes.According to the optimization results,the inlet stagnation temperature and the cascade pressure ratio were proposed to be 388.67(K)and 0.55(-),respectively.In particular,the suggested optimaltemperature and pressure ratio improved the liquid mass fraction and mean droplet radius by about 32%and 29%,respectively.Also,in the identified optimal operating state,the ratios of erosion,condensation loss,and kinetic energy fell by 76%,32.7%,and 15.85%,respectively,while the mass flow rate ratio rose by 0.68%.展开更多
This paper presents the improved design of a 25 MW gas turbine power plant at Omoku in the Niger Delta area of Nigeria, using combined cycle application. It entails retrofitting a steam bottoming plant to the existing...This paper presents the improved design of a 25 MW gas turbine power plant at Omoku in the Niger Delta area of Nigeria, using combined cycle application. It entails retrofitting a steam bottoming plant to the existing 25 MW gas turbine plant by incorporating a heat recovery steam generator. The focus is to improve performance as well as reduction in total emission to the environment. Direct data collection was performed from the HMI monitoring screen, log books and manufacturer’s manual. Employing the application of MATLAB, the thermodynamics equations were modeled and appropriate parameters of the various components of the steam turbine power plant were determined. The results show that the combined cycle system had a total power output of 37.9 MW, made up of 25.0 MW from the gas turbine power plant and 12.9 MW (an increase of about 51%) from the steam turbine plant, having an HRSG, condenser and feed pump capacities of 42.46 MW, 29.61 MW and 1.76 MW respectively. The condenser cooling water parameters include a mass flow of 1180.42 kg/s, inlet and outlet temperatures of 29.8°C and 35.8°C respectively. The cycle efficiency of the dry mode gas turbine was 26.6% whereas, after modification, the combined cycle power plant overall efficiency is 48.8% (about 84% increases). Hence, SIEMENS steam turbine product of MODEL: SST-150 was recommended as the steam bottoming plant. Also the work reveals that a heat flow of about 42.46 MW which was otherwise being wasted in the exhaust gas of the 25 MW gas turbine power plant could be converted to 12.9 MW of electric power, thus reducing the total emission to the environment.展开更多
文摘The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance change with operation load is important to guide the economic operation of the unit. One simplified Variable Operation Condition Analysis Method was put forward for calculation of the unit output-turbine back pressure characteristics. Based on this method, the choked back pressure for each operation load can be determined. An example was given for a super-critical, regenerative single-shaft, 2-casing with 2-exhaust steam turbine generation unit with air cooled condenser. The calculation result was provided and compared with the result of the unit with wet cooling technology.
文摘Removal of condensates from wet steam flow in the last stages of steam turbines significantly promotes stage efficiency and prevents erosion of rotors. In this paper, homogeneous spontaneous condensation in transonic steam flow in the 2-D rotor-tip section of a stage turbine is investigated. Calculated results agree with experimental data reasonably well. On the basis of the above work, a 2-D numerical simulation of wet steam flow in adjacent root sections of a complex steam turbine stage was carded out. Computational results were analyzed and provide insights into effective removal of humidity.
基金This research was supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea.(NRF-2022H1D3A2A02090885).
文摘Water droplets cause corrosion and erosion,condensation loss,and thermal efficiency reduction in low-pressure steam turbines.In this study,multi-objective optimization was carried out using the black-box method through the automatic linking of a genetic algorithm(GA)and a computational fluid dynamics(CFD)code to find the optimal values of two design variables(inlet stagnation temperature and cascade pressure ratio)to reduce wetness in the last stages of turbines.The wet steam flow numerical model was used to calculate the optimization parameters,including wetness fraction rate,mean droplet radius,erosion rate,condensation loss rate,kinetic energy rate,and mass flow rate.Examining the validation results showed a good agreement between the experimental data and the numerical outcomes.According to the optimization results,the inlet stagnation temperature and the cascade pressure ratio were proposed to be 388.67(K)and 0.55(-),respectively.In particular,the suggested optimaltemperature and pressure ratio improved the liquid mass fraction and mean droplet radius by about 32%and 29%,respectively.Also,in the identified optimal operating state,the ratios of erosion,condensation loss,and kinetic energy fell by 76%,32.7%,and 15.85%,respectively,while the mass flow rate ratio rose by 0.68%.
文摘This paper presents the improved design of a 25 MW gas turbine power plant at Omoku in the Niger Delta area of Nigeria, using combined cycle application. It entails retrofitting a steam bottoming plant to the existing 25 MW gas turbine plant by incorporating a heat recovery steam generator. The focus is to improve performance as well as reduction in total emission to the environment. Direct data collection was performed from the HMI monitoring screen, log books and manufacturer’s manual. Employing the application of MATLAB, the thermodynamics equations were modeled and appropriate parameters of the various components of the steam turbine power plant were determined. The results show that the combined cycle system had a total power output of 37.9 MW, made up of 25.0 MW from the gas turbine power plant and 12.9 MW (an increase of about 51%) from the steam turbine plant, having an HRSG, condenser and feed pump capacities of 42.46 MW, 29.61 MW and 1.76 MW respectively. The condenser cooling water parameters include a mass flow of 1180.42 kg/s, inlet and outlet temperatures of 29.8°C and 35.8°C respectively. The cycle efficiency of the dry mode gas turbine was 26.6% whereas, after modification, the combined cycle power plant overall efficiency is 48.8% (about 84% increases). Hence, SIEMENS steam turbine product of MODEL: SST-150 was recommended as the steam bottoming plant. Also the work reveals that a heat flow of about 42.46 MW which was otherwise being wasted in the exhaust gas of the 25 MW gas turbine power plant could be converted to 12.9 MW of electric power, thus reducing the total emission to the environment.