Labyrinth seal can cause steam-exciting, the structural and operating parameters of labyrinth seal have effect on stability of rotor-system. For investigating the coupling influences of the structure and operating par...Labyrinth seal can cause steam-exciting, the structural and operating parameters of labyrinth seal have effect on stability of rotor-system. For investigating the coupling influences of the structure and operating parameters of labyrinth seals on dynamic coefficients, a model of calculating dynamic coefficients of labyrinth seals is presented using a two control volume model. The coupling influences of parameters on cross-coupled stiffness and direct damping of labyrinth seal are discussed. In the conclusion, a reference of preventing steam-exciting vibration and optimum determination of design parameters of labyrinth seals are provided.展开更多
The thermal stress-induced deformation issue of receiver is crucial to the performance and reliability of a parabolic-trough(PT) concentrating solar power(CSP) system with the promising direct steam generation(DSG) te...The thermal stress-induced deformation issue of receiver is crucial to the performance and reliability of a parabolic-trough(PT) concentrating solar power(CSP) system with the promising direct steam generation(DSG) technology.The objective of the present study is to propose a new-type receiver with axially-hollow spiral deflector and optimize the geometric structure to solve the above issue.To this end,optical-flow-thermal multi-physics coupling models have been established for the preheating,boiling and superheating sections of a typical PT-DSG loop.The simulation results show that our proposed new-type receiver demonstrates outstanding comprehensive performance.It can minimize the circumferential temperature difference through the spiral deflector while lower the flow resistance cost through the axially hollow structure at the same time.As quantitatively evaluated by the temperature uniformity improvement(ε_(ΔT)) and the performance evaluation criteria(PEC),different designs are achieved based on different optimal schemes.When ε_(ΔT)is of primary importance,the optimal design with torsional ratio of 1 is achieved,with ε_(ΔT)=25.4%,25.7%,41.5% and PEC=0.486,0.878,0.596corresponding to preheating,boiling,superheating sections,respectively.When PEC is of primary importance,the optimal design with torsional ratio of 6-6.5 is achieved,with PEC=0.950,2.070,0.993 and ε_(ΔT)=18.2%,13.3 %,19.4% corresponding to preheating,boiling,superheating sections,respectively.展开更多
Solar multiple (SM) and thermal storage capacity are two key design parameters for revealing the performance of direct steam generation (DSG) solar power tower plant. In the case of settled land area, SM and therm...Solar multiple (SM) and thermal storage capacity are two key design parameters for revealing the performance of direct steam generation (DSG) solar power tower plant. In the case of settled land area, SM and thermal storage capacity can be optimized to obtain the minimum levelized cost of electricity (LCOE) by adjusting the power generation output. Taking the dual-receiver DSG solar power tower plant with a given size of solar field equivalent electricity of 100 MWe in Sevilla as a reference case, the minimum LCOE is 21.77 /kWhe with an SM of 1.7 and a thermal storage capacity of 3 h. Besides Sevilla, two other sites are also introduced to discuss the influence of annual DNI. When compared with the case of Sevilla, the minimum LCOE and optimal SM of the San Jose site change just slightly, while the minimum LCOE of the Bishop site decreases by 32.8% and the optimal SM is reduced to 1.3. The influence of the size of solar field equivalent electricity is studied as well. The minimum LCOE decreases with the size of solar field, while the optimal SM and thermal storage capacity still remain unchanged. In addition, the sensitivity of different investment in sub-system is investigated. In terms ofoptimal SM and thermal storage capacity, they can decrease with the cost of thermal storage system but increase with the cost of power generation unit.展开更多
Direct steam injection(DSI)was applied to minimize the quality changes of white radish(Raphanus sativus)broth during sterilization.This study compared the degree of browning of white radish broth from a retort sterili...Direct steam injection(DSI)was applied to minimize the quality changes of white radish(Raphanus sativus)broth during sterilization.This study compared the degree of browning of white radish broth from a retort sterilization system and a DSI system.The quality changes after thermal treatments,such as retorting and DSI,were evaluated by Lab color values,the browning index(BI)and sensory evaluation.As the volume of the retort pouch increased,the thermal processing time increased.Significant increases of a and b values,color difference and BI were observed.Unlike the retort sterilization,the DSI treatment showed no significant differences in color properties of the radish broth with a wide range of sterilization temperature.The highest sensory score among the DSI treated samples was observed at the lowest sterilization temperature(125℃).The results demonstrated that the DSI treatment showed a higher stability in the quality associated with the browning reaction,such as the color indices and BI because the DSI process rapidly increased the temperature of the radish broth by transferring the latent heat of steam to the fluid.展开更多
基金This project is supported by National Natural Science Foundation of China(59990472). Manuscript received on November 30, 1999 r
文摘Labyrinth seal can cause steam-exciting, the structural and operating parameters of labyrinth seal have effect on stability of rotor-system. For investigating the coupling influences of the structure and operating parameters of labyrinth seals on dynamic coefficients, a model of calculating dynamic coefficients of labyrinth seals is presented using a two control volume model. The coupling influences of parameters on cross-coupled stiffness and direct damping of labyrinth seal are discussed. In the conclusion, a reference of preventing steam-exciting vibration and optimum determination of design parameters of labyrinth seals are provided.
基金financially supported by the National Natural Science Foundation of China (52176202)the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (41200101)。
文摘The thermal stress-induced deformation issue of receiver is crucial to the performance and reliability of a parabolic-trough(PT) concentrating solar power(CSP) system with the promising direct steam generation(DSG) technology.The objective of the present study is to propose a new-type receiver with axially-hollow spiral deflector and optimize the geometric structure to solve the above issue.To this end,optical-flow-thermal multi-physics coupling models have been established for the preheating,boiling and superheating sections of a typical PT-DSG loop.The simulation results show that our proposed new-type receiver demonstrates outstanding comprehensive performance.It can minimize the circumferential temperature difference through the spiral deflector while lower the flow resistance cost through the axially hollow structure at the same time.As quantitatively evaluated by the temperature uniformity improvement(ε_(ΔT)) and the performance evaluation criteria(PEC),different designs are achieved based on different optimal schemes.When ε_(ΔT)is of primary importance,the optimal design with torsional ratio of 1 is achieved,with ε_(ΔT)=25.4%,25.7%,41.5% and PEC=0.486,0.878,0.596corresponding to preheating,boiling,superheating sections,respectively.When PEC is of primary importance,the optimal design with torsional ratio of 6-6.5 is achieved,with PEC=0.950,2.070,0.993 and ε_(ΔT)=18.2%,13.3 %,19.4% corresponding to preheating,boiling,superheating sections,respectively.
基金This research was supported by the National Natural Science Foundation of China (Grant No. 51676069), the 111 Project (1312034), and the Fundamental Research Funds for the Central Universities (Grant No. 2016XS30).
文摘Solar multiple (SM) and thermal storage capacity are two key design parameters for revealing the performance of direct steam generation (DSG) solar power tower plant. In the case of settled land area, SM and thermal storage capacity can be optimized to obtain the minimum levelized cost of electricity (LCOE) by adjusting the power generation output. Taking the dual-receiver DSG solar power tower plant with a given size of solar field equivalent electricity of 100 MWe in Sevilla as a reference case, the minimum LCOE is 21.77 /kWhe with an SM of 1.7 and a thermal storage capacity of 3 h. Besides Sevilla, two other sites are also introduced to discuss the influence of annual DNI. When compared with the case of Sevilla, the minimum LCOE and optimal SM of the San Jose site change just slightly, while the minimum LCOE of the Bishop site decreases by 32.8% and the optimal SM is reduced to 1.3. The influence of the size of solar field equivalent electricity is studied as well. The minimum LCOE decreases with the size of solar field, while the optimal SM and thermal storage capacity still remain unchanged. In addition, the sensitivity of different investment in sub-system is investigated. In terms ofoptimal SM and thermal storage capacity, they can decrease with the cost of thermal storage system but increase with the cost of power generation unit.
基金This work was supported by Korea Institute of Planning and Evaluation for Technology in Food,Agriculture,Forestry and Fisheries(IPET)through High Value-added Food Technology Development Program,funded by Ministry of Agriculture,Food and Rural Affairs(Grant No.314047-2)This study has been worked with the support of a research grant of Kangwon National University in 2016.
文摘Direct steam injection(DSI)was applied to minimize the quality changes of white radish(Raphanus sativus)broth during sterilization.This study compared the degree of browning of white radish broth from a retort sterilization system and a DSI system.The quality changes after thermal treatments,such as retorting and DSI,were evaluated by Lab color values,the browning index(BI)and sensory evaluation.As the volume of the retort pouch increased,the thermal processing time increased.Significant increases of a and b values,color difference and BI were observed.Unlike the retort sterilization,the DSI treatment showed no significant differences in color properties of the radish broth with a wide range of sterilization temperature.The highest sensory score among the DSI treated samples was observed at the lowest sterilization temperature(125℃).The results demonstrated that the DSI treatment showed a higher stability in the quality associated with the browning reaction,such as the color indices and BI because the DSI process rapidly increased the temperature of the radish broth by transferring the latent heat of steam to the fluid.