期刊文献+
共找到196,077篇文章
< 1 2 250 >
每页显示 20 50 100
Unraveling the significance of cobalt on transformation kinetics,crystallography and impact toughness in high-strength steels
1
作者 Yishuang Yu Jingxiao Zhao +3 位作者 Xuelin Wang Hui Guo Zhenjia Xie Chengjia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期380-390,共11页
This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that ... This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that the Co-bearing steel exhibits finer blocks and a lower ductile-brittle transition temperature than the steel without Co.Moreover,the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6.The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair.Furthermore,the addition of Co induces a larger transformation driving force and a lower bainite start temperature(BS),thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair.These findings would be instructive for the composition,microstructure design,and property optimization of high-strength steels. 展开更多
关键词 high-strength steel COBALT transformation kinetics CRYSTALLOGRAPHY impact toughness
下载PDF
Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property
2
作者 Xiaoxiao Wang Qingsong Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期111-118,共8页
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ... Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance. 展开更多
关键词 ferritic steels coherent particles MICROSTRUCTURE compression test work hardening
下载PDF
Effects of carbon content on the microstructure and tensile properties of a low-density steel
3
作者 Yongxuan Shang Mingyu Fan +1 位作者 Shuyong Jiang Zhongwu Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期391-401,共11页
Carbon can change the phase components of low-density steels and influence the mechanical properties.In this study,a new method to control the carbon content and avoid the formation ofδ-ferrite by decarburization tre... Carbon can change the phase components of low-density steels and influence the mechanical properties.In this study,a new method to control the carbon content and avoid the formation ofδ-ferrite by decarburization treatment was proposed.The microstructural changes and mechanical characteristics with carbon content induced by decarburization were systematically examined.Crussard-Jaoul(C-J)analysis was employed to examine the work hardening characteristics during the tensile test.During decarburization by heat treatments,the carbon content within the austenite phase decreased,while Mn and Al were almost unchanged;this made the steel with full austenite transform into the austenite and ferrite dual phase.Meanwhile,(Ti,V)C carbides existed in both matrix phase and the mole fraction almost the same.In addition,the formation of other carbides restrained.Carbon loss induced a decrease in strength due to the weakening of the carbon solid solution.For the steel with the single austinite,the deformation mode of austenite was the dislocation planar glide,resulting in the formation of microbands.For the dual-phase steel,the deformation occurred by the dislocation planar glide of austenite first,with the increase in strain,the cross slip of ferrite took place,forming dislocation cells in ferrite.At the late stage of deformation,the work hardening of austinite increased rapidly,while that of ferrite increased slightly. 展开更多
关键词 low-density steels carbon content DECARBURIZATION strengthening mechanisms work hardening behavior
下载PDF
Review of precipitation strengthening in ultrahigh-strength martensitic steel
4
作者 Zhihao Tian Chunlei Shang +7 位作者 Chaolei Zhang Xiaoye Zhou Honghui Wu Shuize Wang Guilin Wu Junheng Gao Jiaming Zhu Xinping Mao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期256-269,共14页
Martensite is an important microstructure in ultrahigh-strength steels,and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix.Despite cons... Martensite is an important microstructure in ultrahigh-strength steels,and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix.Despite considerable research efforts devoted to this area,a systematic summary of these advancements is lacking.This review focuses on the precipitates prevalent in ultrahigh-strength martensitic steel,primarily carbides(e.g.,MC,M_(2)C,and M_(3)C)and intermetallic compounds(e.g.,Ni Al,Ni_(3)X,and Fe_(2)Mo).The precipitation-strengthening effect of these precipitates on ultrahigh-strength martensitic steel is discussed from the aspects of heat treatment processes,microstructure of precipitate-strengthened martensite matrix,and mechanical performance.Finally,a perspective on the development of precipitation-strengthened martensitic steel is presented to contribute to the advancement of ultrahigh-strength martensitic steel.This review highlights significant findings,ongoing challenges,and opportunities in the development of ultrahigh-strength martensitic steel. 展开更多
关键词 ultrahigh-strength martensitic steel precipitation strengthening mechanical property CARBIDE intermetallic compound
下载PDF
Effect of Nb-V microalloying on the hot deformation behavior of medium Mn steels
5
作者 Yumeng Wang Qinyi Guo +1 位作者 Bin Hu Haiwen Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期360-368,共9页
The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulati... The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulating the measured flow curves,we successfully constructed deformation activation energy(Q)maps and processing maps for identifying the region of flow instability.We concluded the following consequences of Nb-V alloying for MMS.(i)The critical strain increases and the increment diminishes with the increasing deformation temperature,suggesting that NbC precipitates more efficiently retard dynamic recrystallization(DRX)in MMS compared with solute Nb.(ii)The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels,suggesting that its ability to retard DRX is greater than that of the high Mn content.(iii)The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress,in which fine recrystallized and coarse unrecrystallized grains are present. 展开更多
关键词 medium manganese steel niobium-vanadium microalloying flow behavior dynamic recrystallization hot workability
下载PDF
Microstructure and Wear/corrosion Resistance of Stainless Steel Laser-alloyed with Mn+W_(2)C, Mn+NiWC and Mn+SiC
6
作者 ZHOU Rui DIAO Xiaogang SUN Yixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期283-294,共12页
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder... In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers. 展开更多
关键词 laser surface alloying stainless steel carbide type MICROSTRUCTURE wear and corrosion resistance
下载PDF
The Mechanism of Heating Rate on the Secondary Recrystallization Evolution in Grain Oriented Silicon Steel
7
作者 GAO Qian LI Jun +3 位作者 WANG Xianhui CAO Laifu GONG Jian LI Bo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期275-282,共8页
Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the... Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties. 展开更多
关键词 high temperature annealing heating rate secondary recrystallization grain oriented silicon steel
下载PDF
Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe-0.1C-5Mnmedium manganese steel
8
作者 Mei Zhang Wenhao Li +3 位作者 Yangfei Chen Yang Jiang Xiaofei Guo Han Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期369-379,共11页
The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmiss... The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase. 展开更多
关键词 medium-Mn steel retained austenite progressive transformation-induced plasticity effect local strain fracture initiation
下载PDF
Effect of lamellarization on the microstructure and mechanical properties of marine 10Ni5CrMoV steel
9
作者 Tao Zou Yanwu Dong +2 位作者 Zhouhua Jiang Shuyang Du Yushuo Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期402-413,共12页
Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the... Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the kinetics of reverse austenite transformation,strain hardening behavior,and toughening mechanism were further investigated.The lamellarized specimens possess low yield strength but high toughness,especially cryogenic toughness.Lamellarization leads to the development of film-like reversed austenite at the martensite block and lath boundaries,refining the martensite structure and lowering the equivalent grain size.Kinetic analysis of austenite reversion based on the JMAK model shows that the isothermal transformation is dominated by the growth of reversed austenite,and the maximum transformation of reversed austenite is reached at the peak temperature(750℃).The strain hardening behavior based on the modified Crussard-Jaoul analysis indicates that the reversed austenite obtained from lamellarization reduces the proportion of martensite,significantly hindering crack propagation via martensitic transformation during the deformation.As a consequence,the QLT specimens exhibit high machinability and low yield strength.Compared with the QT specimen,the ductile-brittle transition temperature of the QLT specimens decreases from-116 to-130℃due to the low equivalent grain size and reversed austenite,which increases the cleavage force required for crack propagation and absorbs the energy of external load,respectively.This work provides an idea to improve the cryogenic toughness of marine 10Ni5CrMoV steel and lays a theoretical foundation for its industrial application and comprehensive performance improvement. 展开更多
关键词 10Ni5CrMoV steel lamellarizing reversed austenite cryogenic toughness ductile-brittle transition temperature
下载PDF
Novel Methodologies for Preventing Crack Propagation in Steel Gas Pipelines Considering the Temperature Effect
10
作者 Nurlan Zhangabay Ulzhan Ibraimova +4 位作者 Marco Bonopera Ulanbator Suleimenov Konstantin Avramov Maryna Chernobryvko Aigerim Yessengali 《Structural Durability & Health Monitoring》 EI 2025年第1期1-23,共23页
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac... Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines. 展开更多
关键词 Crack propagation finite-element internal pressure PRESTRESSING steel gas pipeline temperature effect
下载PDF
固溶时间对18Ni(250)马氏体时效钢组织和性能的影响
11
作者 闫昆 李绍宏 +3 位作者 韩顺 厉勇 王春旭 杨超 《材料热处理学报》 CAS CSCD 北大核心 2024年第12期159-166,共8页
采用光学显微镜、扫描电镜、电子背散射衍射(EBSD)技术、力学试验机和冲击试验机等研究了单次循环相变处理后固溶处理时间对18Ni(250)马氏体时效钢组织及性能的影响。结果表明,单次循环18Ni(250)马氏体时效钢在820℃固溶处理1~8 h后原... 采用光学显微镜、扫描电镜、电子背散射衍射(EBSD)技术、力学试验机和冲击试验机等研究了单次循环相变处理后固溶处理时间对18Ni(250)马氏体时效钢组织及性能的影响。结果表明,单次循环18Ni(250)马氏体时效钢在820℃固溶处理1~8 h后原始奥氏体晶粒较仅单次循环后明显细化,固溶处理1 h时晶粒最细,为14.2μm。随固溶处理时间增加,试验钢的晶粒逐渐长大,同时马氏体板条块尺寸逐渐变大,小角度晶界向大角度转化,抗拉强度和屈服强度逐渐降低,冲击吸收能量呈先增加后降低的趋势,断后伸长率变化不大,断面收缩率呈先增加后降低趋势。18Ni(250)马氏体时效钢经单次循环相变后在820℃固溶1~3 h时具有较好的强韧性匹配。 展开更多
关键词 18Ni(250)马氏体时效钢 循环相变 力学性能 晶粒取向
下载PDF
Effect of microstructure and passive film on corrosion resistance of 2507 super duplex stainless steel prepared by different cooling methods in simulated marine environment 被引量:6
12
作者 Min Zhu Qiang Zhang +1 位作者 Yong-feng Yuan Shao-yi Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第8期1100-1114,共15页
The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cy... The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cyclic corrosion test,scanning Kelvin probe force microscopy,atomic force microscopy,and X-ray photoelectron spectrometry.The results show that the occupation ratio ofγphase increases with the decrease in cooling rate,whereas the content ofαphase reduces gradually.In addition,theσprecipitated phase only emerges in the annealed steel.The pitting sensitivity and corrosion rate of 2507 SDSS reduce first and then increase as the cooling rate decreases.Theσprecipitated phase drastically reduces the protective ability of the passive film and facilitates micro-galvanic corrosion of the annealed steel.For various microstructures,the pits are preferentially distributed within theσandγphases.The corrosion resistance of 2507 SDSS prepared by different cooling methods is closely related to the microstructure and structure(stability and homogeneity)of the passive film.Normalized steel shows an optimal corrosion resistance,followed by the quenched and annealed steels. 展开更多
关键词 stainless steel MICROSTRUCTURE corrosion resistance passive film
下载PDF
Microstructure and mechanical characterization of Incoloy 825 Ni-based alloy welded to 2507 super duplex stainless steel through dissimilar friction stir welding 被引量:5
13
作者 Jalal KANGAZIAN Morteza SHAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第8期1677-1688,共12页
The feasibility of dissimilar friction stir welding(FSW)between the SAF 2507 super duplex stainless steel and the Incoloy825 Ni-based superalloy was evaluated.The microstructure and mechanical behavior of the weldment... The feasibility of dissimilar friction stir welding(FSW)between the SAF 2507 super duplex stainless steel and the Incoloy825 Ni-based superalloy was evaluated.The microstructure and mechanical behavior of the weldments were examined too.The results showed that the alloys were successfully welded together by positioning the SAF 2507 on the advancing side.The nuggets displayed higher hardness than the base metals,due to the occurrence of dynamic recrystallization and the subsequent refinement of the microstructures.The welded sample obtained the similar strength to the Incoloy 825 parent metal,showing the ductile fracture mode after the tensile tests by SEM.Moreover,the weld zone(31 J)exhibited higher and lower toughness than the Incoloy 825(23 J)and SAF 2507(42 J)parent metals,respectively.Based on the obtained results,the FSW method could be recommended to weld the super duplex stainless steel/Ni-based superalloy joints. 展开更多
关键词 friction stir welding dissimilar welds nickel stainless steel MICROSTRUCTURE mechanical property
下载PDF
Influence of MIG/MAG Welding Process on Mechanical and Pitting Corrosion Behaviors on the Super-Duplex Stainless Steel SAF 2507 Welded Joints 被引量:2
14
作者 Bruno Leonardy S. Lopes Samuel F. Rodrigues +4 位作者 Eden S. Silva Gedeon S. Reis Waldemir dos P. Martins Juvenilson Costa Damascena Valdemar S. Leal 《Materials Sciences and Applications》 2018年第2期228-245,共18页
The main objective of this research is to better understand the correlation between the constituent phases presented in the super-duplex steel SAF 2507 when it is under welding process by arc shielding gas MIG-MAG (Me... The main objective of this research is to better understand the correlation between the constituent phases presented in the super-duplex steel SAF 2507 when it is under welding process by arc shielding gas MIG-MAG (Metal Inert Gas-Metal Active Gas). Conventional short circuit transfer and derivative STT (Surface Tension Transfer) using the 2594 welding wire as a filler metal and the effects on welding power in hardness, toughness and pitting corrosion are considered here. The results showed that the welding energy (Ew) changed the α/γ-phase’s balance and occasionally formed σ-phase in ferrite grain boundaries which led to changes in hardness, toughness and pitting corrosion resistance in molten zone (MZ), heat activated zone (HAZ) and metal base regions (MB). Furthermore, the increased amount of γ-phase improved the pitting corrosion resistance index (PRENγ) mainly in the MZ. This is due to decrease of α-phase fraction and formation of coarser grains, for higher welding energy. The toughness in the MZ decreased with less formation of γ-phase, coalescence of ferritic grains and localized formation of σ-phase, raising the hardness in the HAZ when the welding energy was lower. 展开更多
关键词 Super-Duplex steels Welding Toughness PITTING Corrosion MICROHARDNESS
下载PDF
Quantitative deformation measurements and analysis of the ferrite-austenite banded structure in a 2205 duplex stainless steel at 250 ℃ 被引量:3
15
作者 Ji-Hua Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期487-493,共7页
The deformation process of the microstructure in 2205 duplex stainless steel(DSS)under thermo-mechanical coupling at 250℃was investigated using digital image correlation(DIC).A thermal tension test of duplex stainles... The deformation process of the microstructure in 2205 duplex stainless steel(DSS)under thermo-mechanical coupling at 250℃was investigated using digital image correlation(DIC).A thermal tension test of duplex stainless steel(2205DSS)with a banded structure was carded out to observe the initial deformation of the microstructure.It was found that inhomogeneous strain fields occurred primarily in austenite.The maximum normal strain in austenite was almost pos-itive,while that in ferrite was almost negative.In addition,a thermal cyclic-loading test was conducted,and the strain field was characterized by e11.Strain heterogeneities were induced after 400 cycles,which spread within the austenite and at the phase boundaries with the load increasing.The high tensile-strain regions were always located adjacent to regions of intense compressive strain.Based on the strain matrix sum vs.cycle number,we found that hardening occurred in the early cycles followed by softening. 展开更多
关键词 thermo-mechanical coupling duplex stainless steel digital image correlation(DIC)
下载PDF
Development and prospects of molten steel deoxidation in steelmaking process 被引量:3
16
作者 Zhongliang Wang Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期18-32,共15页
In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the... In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the steel liquid,affecting the cleanliness of the steel.With the increasing requirements for steel performance,reducing the oxygen content in the steel liquid and ensuring its high cleanliness is necessary.After more than a hundred years of development,the total oxygen content in steel has been reduced from approximately 100×10^(-6)to approximately 10×10^(-6),and it can be controlled below 5×10^(-6)in some steel grades.A relatively stable and mature deoxidation technology has been formed,but further reducing the oxygen content in steel is no longer significant for improving steel quality.Our research team developed a deoxidation technology for bearing steel by optimizing the entire conventional process.The technology combines silicon–manganese predeoxidation,ladle furnace diffusion deoxidation,and vacuum final deoxidation.We successfully conducted industrial experiments and produced interstitial-free steel with natural decarbonization predeoxidation.Non-aluminum deoxidation was found to control the oxygen content in bearing steel to between 4×10^(-6) and 8×10^(-6),altering the type of inclusions,eliminating large particle Ds-type inclusions,improving the flowability of the steel liquid,and deriving a higher fatigue life.The natural decarbonization predeoxidation of interstitial-free steel reduced aluminum consumption and production costs and significantly improved the quality of cast billets. 展开更多
关键词 steel deoxidation DEOXIDIZER metallurgical equipment bearing steel IF steel
下载PDF
解读2024年度全球承包商250强
17
作者 董一帆 韩梓和 +2 位作者 董雨松 张馨月 满庆鹏 《工程管理学报》 2024年第5期143-147,共5页
根据美国《工程新闻记录》(ENR)杂志发布的2024年度全球承包商250强的统计数据,从业务领域、新增合同额及公司分布范围等3个方面对进入250强的公司进行具体分析。对进入2024年度全球承包商250强中的58家中国内地公司的主要业务领域构成... 根据美国《工程新闻记录》(ENR)杂志发布的2024年度全球承包商250强的统计数据,从业务领域、新增合同额及公司分布范围等3个方面对进入250强的公司进行具体分析。对进入2024年度全球承包商250强中的58家中国内地公司的主要业务领域构成和排名情况进行分析,结合ENR往年提供的详细数据,分析近5年来位于承包商250强中前10强的公司及中国公司的逐年排名和业务领域等方面的变化情况。 展开更多
关键词 全球承包商250 ENR排名 中国公司
下载PDF
Review on the plastic instability of medium -Mn steels for identifying the formation mechanisms of Lüders and Portevin -Le Chatelier bands 被引量:3
18
作者 Bin Hu Han Sui +3 位作者 Qinghua Wen Zheng Wang Alexander Gramlich Haiwen Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1285-1297,共13页
Plastic instability,including both the discontinuous yielding and stress serrations,has been frequently observed during the tensile deformation of medium-Mn steels(MMnS)and has been intensively studied in recent years... Plastic instability,including both the discontinuous yielding and stress serrations,has been frequently observed during the tensile deformation of medium-Mn steels(MMnS)and has been intensively studied in recent years.Unfortunately,research results are controversial,and no consensus has been achieved regarding the topic.Here,we first summarize all the possible factors that affect the yielding and flow stress serrations in MMnS,including the morphology and stability of austenite,the feature of the phase interface,and the deformation parameters.Then,we propose a universal mechanism to explain the conflicting experimental results.We conclude that the discontinuous yielding can be attributed to the lack of mobile dislocation before deformation and the rapid dislocation multiplication at the beginning of plastic deformation.Meanwhile,the results show that the stress serrations are formed due to the pinning and depinning between dislocations and interstitial atoms in austenite.Strain-induced martensitic transformation,influenced by the mechanical stability of austenite grain and deformation parameters,should not be the intrinsic cause of plastic instability.However,it can intensify or weaken the discontinuous yielding and the stress serrations by affecting the mobility and density of dislocations,as well as the interaction between the interstitial atoms and dislocations in austenite grains. 展开更多
关键词 medium manganese steel discontinuous yielding stress serrations retained austenite dislocations
下载PDF
250 mm×250 mm轴承钢大方坯压下工艺优化及质量提升
19
作者 高振波 张慧 +3 位作者 王明林 杨宝 汪国才 张国庆 《甘肃冶金》 2024年第1期57-63,共7页
建立了250 mm×250 mm轴承钢大方坯的凝固传热模型,并根据凝固平方根定律验证了模型的准确性。讨论了拉速和过热度对凝固终点的影响,并制定新的压下制度。运用不同压下制度进行了工业试验,试验结果表明:优化后的压下制度基本消除大... 建立了250 mm×250 mm轴承钢大方坯的凝固传热模型,并根据凝固平方根定律验证了模型的准确性。讨论了拉速和过热度对凝固终点的影响,并制定新的压下制度。运用不同压下制度进行了工业试验,试验结果表明:优化后的压下制度基本消除大方坯的中心缩孔,使得中心偏析比由1.1降低至1.0,同时使得V形偏析线上最高碳含量由1.391%降至1.184%,V形偏析线上和非偏析线上的平均碳含量极差由0.113%降至0.07%。 展开更多
关键词 轴承钢 大方坯 压下工艺 偏析 缩孔 数值模拟
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
20
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部