期刊文献+
共找到408篇文章
< 1 2 21 >
每页显示 20 50 100
Corrosion behavior of aluminum/steel dissimilar metals friction stir welding joint 被引量:8
1
作者 Mo Shuxian Dong Shaokang +2 位作者 Zhu Hao Jiao Yinan Wang Jun 《China Welding》 CAS 2021年第3期20-30,共11页
The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characteriz... The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characterized by optical microscope(OM),scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results showed that the localized corrosion of FSW joint of Al/steel dissimilar metals mainly initiated at the interface transition zone(ITZ).Precipitation of intermetallic compounds(IMCs)and Fe-rich phase particles in ITZ accelerated the corrosion of the FSW joint.This phenomenon has been attributed to distinct corrosion potentials between IMCs and steel,aluminum base metal.The corrosion resistance sequence of IMCs in ITZ is Fe_(3)Al>FeAl>Fe_(2)Al_(5). 展开更多
关键词 aluminum/steel dissimilar metals joining corrosion behavior Intermetallic compounds
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal
2
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE Failure mechanism Creep life
下载PDF
Microstructure and mechanical properties of dissimilar joint between aluminum and aluminum-coated steel by cold metal transfer process
3
作者 田春英 周智远 +4 位作者 王军 廖平 李海涛 庄明辉 杨文杰 《China Welding》 EI CAS 2015年第3期73-80,共8页
Two dissimilar materials, aluminum alloy and aluminum-coated steel, were joined by cold metal transfer process using AlSi5 filler wire. To this end, the steel was coated with Al-Si. The steel did not melt and aluminum... Two dissimilar materials, aluminum alloy and aluminum-coated steel, were joined by cold metal transfer process using AlSi5 filler wire. To this end, the steel was coated with Al-Si. The steel did not melt and aluminum was melt to form the joint during the process, it was actually cold metal transfer welding-brazing. The macrostructure, microstructure, alloy element distribution, and inter-metallic compounds were analyzed by optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. It was found that the Al-Si coating dissolved into the weld metal. The pre-existing thin Fe-Al- Si ternary inter-metallic compounds in the interface between the Ak-Si coating layer and base metal steel also partially dissolved into the weld zone, tending to reduce the thickness of inter-metallic compounds. Approximate 3 μm thick undissolved intermetallic compound was found at the interface after welding which could guarantee sound bonding strength in dissimilar materials joining. The sample was fractured at the fusion zone near the aluminum side in the tensile test. The ultimate tensile strength was about 156 MPa, and the fracture mode is ductile failure in nature according to its morphology. 展开更多
关键词 cold metal transfer WELDING-BRAZING aluminum aluminum-coated steel
下载PDF
Analysis of Laser Micro Welding of Copper-Aluminum Dissimilar Metals and Its Mechanism
4
作者 Jiang Huang Wenqing Shi +2 位作者 Yuping Xie Zhigang Liang Jinming Zhan 《Journal of Applied Mathematics and Physics》 2019年第12期3192-3200,共9页
Micro welding of dissimilar metals can meet many performance requirements for modern engineering structures. In this experiment, laser micro welding of copper-aluminum dissimilar metals was conducted with an HWLW-300A... Micro welding of dissimilar metals can meet many performance requirements for modern engineering structures. In this experiment, laser micro welding of copper-aluminum dissimilar metals was conducted with an HWLW-300A energy negative feedback Nd:YAG pulse laser. By using the overlap welding method with copper on aluminum, with the laser energy being distributed unevenly, good weld joints were obtained. In this paper, the welding mechanism was analyzed from aspects such as welding temperature and the specific heat capacity of the solid metal. Existing defects were identified, and a feasible improvement scheme was proposed. 展开更多
关键词 Mciro WELDING LASER WELDING Copper-aluminum dissimilar metals MECHANISM
下载PDF
Microstructures and mechanical properties of metal inert-gas arc welded Mg-steel dissimilar joints 被引量:7
5
作者 汪晓勇 孙大千 +1 位作者 殷世强 刘东阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2533-2542,共10页
The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the... The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the joints is uneven. Mg alloy welds present a fine equiaxed grain structure. There exists a transition layer consisting mainly of AlFe, AlFe3 and Mg(Fe, Al)2O4 phases at Mg/steel interface, and it is the weakest link in Mg?steel joints. The welding heat input and weld Al content have the significant effect on the joint strength. The joint strength increases with increasing the heat input from 1680 J/cm to 2093 J/cm, due to promoting Mg/steel interface reaction. When weld Al content is increased to 6.20%, the joint strength reaches 192 MPa, 80% of Mg alloy base metal strength. It is favorable to select the suitable welding heat input and weld Al content for improving joint strength. 展开更多
关键词 AZ31B Mg alloy Q235 steel metal inert-gas arc welding dissimilar metal joining
下载PDF
Research on microstructure and properties of boron/Q235 steel laser welded dissimilar joints under synchronous thermal field 被引量:2
6
作者 周广涛 黄涛 +2 位作者 郭玉龙 黄奇凡 张波 《China Welding》 CAS 2023年第4期38-48,共11页
The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel... The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel and Q235 steel were selected for laser tailor welding,which obtained boron/Q235 steel tailor-welded blanks(TWBs). The method of welding with synchronous thermal field(WSTF) was utilized to eliminate the mismatch effects in TWBs. The WSTF was employed to adjust cooling rates of welded joints, thereby intervening in the solidification behaviors and phase transition of the molten pool. Boron/Q235 steel was welded by laser under conventional and WSTF(300-600 ℃) conditions, respectively. The results show that the microstructure of weld and HAZ(boron) was adequately transitioned to ferrites and pearlites instead of abundant martensite by WSTF. Meanwhile, the discrepancy of microhardness and yield strength between various regions of welded joints was greatly reduced, and the overall plasticity of welded joints was enhanced by WSTF. It is indicated that WSTF can effectively contribute to reducing plastic gradient and achieving mechanical congruity in welded joints by restraining the generation of hardbrittle phase, which could significantly improve the formability of TWBs in subsequent hot stamping. 展开更多
关键词 dissimilar metal welding laser tailor welded blank synchronous thermal field boron steel microstructure mechanical property
下载PDF
Microstructures and properties analysis of dissimilar metal joint in the friction stir welded copper to aluminum alloy 被引量:9
7
作者 王希靖 张忠科 +1 位作者 达朝炳 李晶 《China Welding》 EI CAS 2007年第1期57-62,共6页
This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and... This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region' s boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly CugAl4, Al2Cu etc, and their hardness was higher than oihers. 展开更多
关键词 friction stir welding dissimilar metals COPPER aluminum alloy
下载PDF
Dissimilar welding of high nitrogen stainless steel and low alloy high strength steel under different shielding gas composition:Process,microstructure and mechanical properties
8
作者 Zeng Liu Cheng-lei Fan +3 位作者 Chun-li Yang Zhu Ming San-bao Lin Lang-ping Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期138-153,共16页
Ar-N_(2)-O_(2)ternary shielding gas is employed in dissimilar welding between high nitrogen steel and low alloy steel.The effect of O_(2)and N_(2)is investigated based on the systematical analysis of the metal transfe... Ar-N_(2)-O_(2)ternary shielding gas is employed in dissimilar welding between high nitrogen steel and low alloy steel.The effect of O_(2)and N_(2)is investigated based on the systematical analysis of the metal transfer,nitrogen escape phenomenon,weld appearance,nondestructive detection,nitrogen content distribution,microstructure and mechanical properties.There are two nitrogen sources of the nitrogen in the weld:high nitrogen base material and shielding gas.The effect of shielding gas is mainly reflected in these two aspects.The change of the droplet transfer mode affects the fusion ratio,N2in the shielding gas can increase nitrogen content and promote the nitrogen uniform distribution.The addition of 2%O_(2)to Ar matrix can change the metal transfer from globular transfer to spray transfer,high nitrogen base material is thereby dissolved more to the molten pool,making nitrogen content increase,ferrite decrease and the mechanical properties improve.When applying N2-containing shielding gas,arc stability becomes poor and short-circuiting transfer frequency increases due to the nitrogen escape from droplets and the molten pool.Performance of the joints is improved with N_(2)increasing,but internal gas pores are easier to appear because of the poor capacity of low alloy steel to dissolve nitrogen,The generation of pores will greatly reduce the impact resistance.4-8%N2content in shielding gas is recommended in this study considering the integrated properties of the dissimilar welded joint. 展开更多
关键词 High nitrogen steel dissimilar steel joints Shielding gas metal transfer MICROSTRUCTURE Mechanical properties
下载PDF
New methods of predicting dissimilar steel weld metal microstructures by Schaeffler Diagram 被引量:1
9
作者 ZHANG Hanqian WANG Bao and ZHANG Wenyue(The Research Institute of Welding Materials. Taiyuan University of Technology.Taiyuan. 030024. Prof. ZHANG Wenyue. Welding Department. Tianjin University. Tianjin. 300072) 《China Welding》 EI CAS 1996年第1期43-48,共6页
On the base of a number of analyses and researches, some new methods of predicting and expressing the microstructure kinds, of the dissimilar steel welded joint of austenite/pearlite(ferrite) have been presented Those... On the base of a number of analyses and researches, some new methods of predicting and expressing the microstructure kinds, of the dissimilar steel welded joint of austenite/pearlite(ferrite) have been presented Those new methods can ascertain the microstructure kind not only in the different characteristic zones of weld metal but also in the different morphologies in the heterogeneous mixture zone of weld metal. Those new methods. enrich and develop the traditional methods of predicting the microstructure of weld metal by Schaeffler Diagram, and are more concise and practical. 展开更多
关键词 Schaeffler Diagram dissimilar steels microstructure prediction weld metal WELDING
下载PDF
Microstructure in the Weld Metal of Austenitic-Pearlitic Dissimilar Steels and Diffusion of Element in the Fusion Zone 被引量:6
10
作者 Yajiang LI, Zengda ZOU and Bing ZHOU Department of Materials Engineering, Shandong University, Jinan 250061, China E-mail: yajli@jn-public.sd.cninfo.net 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第3期338-342,共5页
Microstructure and alloy element distribution in the welded joint between austenitic stainless steel (1Cr18Ni9Ti) and pearlitic heat-resistant steel (1Cr5Mo) were researched by means of light microscopy, scanning elec... Microstructure and alloy element distribution in the welded joint between austenitic stainless steel (1Cr18Ni9Ti) and pearlitic heat-resistant steel (1Cr5Mo) were researched by means of light microscopy, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Microstructure, divisions of the fusion zone and elemental diffusion distributions in the welded joints were investigated. Furthermore, solidification microstructure and S-ferrite distribution in the weld metal of these steels are also discussed. 展开更多
关键词 Microstructure in the Weld metal of Austenitic-Pearlitic dissimilar steels and Diffusion of Element in the Fusion Zone
下载PDF
Microstructure characteristics of dissimilar metal weld between aluminum alloy and brass
11
作者 董红刚 张旭超 +1 位作者 胡文金 杨继承 《China Welding》 EI CAS 2013年第3期1-5,共5页
Dissimilar metal joining between 5A02 aluminum alloy and H62 brass sheets was conducted by gas tungsten arc welding with Zn-15% Al and Al-12% Si flux-cored filler wires. The microstructure in the weld and distribution... Dissimilar metal joining between 5A02 aluminum alloy and H62 brass sheets was conducted by gas tungsten arc welding with Zn-15% Al and Al-12% Si flux-cored filler wires. The microstructure in the weld and distribution of major alloying elements in the intelfacial layer were examined, and the tensile strength of the resultant joints was measured. Pores appeared in the weld made with Zn-15% Al flax-cored filler wire, the interracial layer mainly consisted of AlCu phase, and the specimens fractured through the weld with tensile strength of 129 MPa. When Al-12% Si flux-cored filler wire was used, Cu diffused into the weld and Al2 Cu phase formed, and the specimens fractured along the interfacial layer with tensile strength of 122 MPa. 展开更多
关键词 dissimilar metal joining aluminum BRASS INTERFACE MICROSTRUCTURE
下载PDF
New methods of predicting dissimilar steel weld metal microstructures by Schaeffler Diagram(Part 2)
12
作者 张汉谦 王宝 张文钺 《China Welding》 EI CAS 1997年第1期58-63,共6页
On the base of the methods of predicting weld metal microstructures of pearlitic dissimilar steel welded joints using austenitic type filler materials by Schaeffler Diagram[1], the other new methods of predicting and ... On the base of the methods of predicting weld metal microstructures of pearlitic dissimilar steel welded joints using austenitic type filler materials by Schaeffler Diagram[1], the other new methods of predicting and expressing weld metal microstnictiires of two kinds of dissimilar steel welded joints (pearlite/pearlite and austenite/pearlite) using austenitic filler materials by Schaeffler Diagram are suggested. Those new methods resolve some difficult problems which the microstructure kinds in two heterogeneous mixture zones of weld metal neighbouring two kinds of welded base metals are difficult to be accurately ascertained and the fluctuations of weld metal microstnictiires across fusion line are difficult to be conveniently expressed according to the traditional predicting method. The new predicting methods are more concise and practical. 展开更多
关键词 Schaeffler Diagram dissimilar steel microstructure prediction weld metal
下载PDF
Non-metallic Inclusions in Continuously Cast Aluminum Killed Steels
13
作者 Wenjun Wang, Xinhua Wang, Jiongming Zhang, Wanjun Wang, Youyu Zhou ( Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China Steelmaking Research Institute, Wuhan Iron and Steel Group, Wuhan 430080, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第3期193-196,共4页
In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Pro... In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Probe Microanalysis) and by analyzing the total oxygen. The results showed that in the slabs the total oxygen was quite low and the inclusions discovered were mainly small-sized angular alumina inclusions. This indicates that most inclusions have been removed by floating out during the continuous casting process. In addition, the countermeasures were discussed to decrease the alumina inclusions in the slabs further. 展开更多
关键词 aluminum killed steel non-metallic inclusion ALUMINA continuous casting
下载PDF
Effect of process parameters on microstructure and properties of laser welded joints of aluminum/steel with Ni/Cu interlayer 被引量:8
14
作者 Xue-long CAO Gang WANG +2 位作者 Chang XING Cai-wang TAN Jun-jun JIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第8期2277-2286,共10页
The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and micro... The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm. 展开更多
关键词 laser welding aluminum/steel dissimilar metals INTERLAYER microstructure mechanical properties
下载PDF
Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel 被引量:4
15
作者 Jing Wang Min-xu Lu +3 位作者 Lei Zhang Wei Chang Li-ning Xu Li-hua Hu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第6期518-524,共7页
To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper... To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by en- ergy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corro- sion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG weld- ing. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaC1 solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints pro- duced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS $31803 duplex stainless steel and low alloy steel in practical application. 展开更多
关键词 dissimilar metals WELDS stainless steel alloy steel microstructure mechanical properties corrosion
下载PDF
Effects of welding parameters and tool geometry on properties of 3003-H18 aluminum alloy to mild steel friction stir weld 被引量:3
16
作者 M.DEHGHANI S.A.A.AKBARI MOUSAVI A.AMADEH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1957-1965,共9页
Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate ... Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate the effects of welding speed, rotation speed and tool shoulder diameter on the microstructure and properties of dissimilar welds. The comparison between microstructure, intermetallics and strength of welds shows the good conformity between the results and the calculated heat input factor (HIF) achieved from the model. The joint strength is controlled by Al/Fe interface at HIF of 0.2-0.4, by TMAZ at HIF of 0.4-0.8 and by intermetallics and/or defects at HIF0.8. 展开更多
关键词 friction stir welding dissimilar joining microstructure tensile strength aluminum alloy carbon steel intermetallic compound
下载PDF
Influence of Creep Strength of Weld on Interfacial Creep Damage of Dissimilar Welded Joint between Martensitic and Bainitic Heat-Resistant Steel 被引量:1
17
作者 张建强 ZHANG Guodong +1 位作者 LUO Chuanhong ZHANG Yinglin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期178-183,共6页
The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(... The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel. 展开更多
关键词 martensitic heat-resistant steel bainitic heat-resistant steel dissimilar metal welding joint creep damage interracial failure
下载PDF
Nickel-coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing 被引量:1
18
作者 葛佳棋 王克鸿 +1 位作者 ZHANG Deku WANG Jian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期601-606,共6页
Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of opti... Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-AI intermetallic compound which is brittle by blocking the contact between A1 and Fe. Intermetallic compounds, i e, AI3Ni2, AlmNi0.9 and A10.3Fe3Si0.7 presented in AI side, FeNi and Fe-A1-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of A1 side, where plenty of A13Ni2 intermetallie compounds were distributed continuously. 展开更多
关键词 45 steel stud 6 061 aluminum alloy high frequency induction brazing dissimilar metaljoint mechanical property microstructure
下载PDF
Interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints during aging 被引量:1
19
作者 Yuan Li Yan-ping Zeng Zhi-chun Wang 《International Journal of Minerals,Metallurgy and Materials》 CSCD 2021年第9期1497-1505,共9页
The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this k... The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this kind of joints.The results showed that not only a band of granular Cr_(23)C_(6)carbides were formed along the fusion boundary in the ferritic steel during aging,but also a large number of granular or plate-like Cr_(23)C_(6)carbides,which have a cube-cube orientation relationship with the matrix,were also precipitated on the weld metal side of the fu-sion boundary,making this zone be etched more easily than the other zone and become a dark etched band.Stacking faults were found in some Cr_(23)C_(6)carbides.In the as-welded state,deformation twins were observed in the weld metal with a fully austenitic structure.The peak micro-hardness was shifted from the ferritic steel side to the weld metal side of the fusion boundary after aging and the peak value increased signific-antly.Based on the experimental results,a mechanism of premature failures of the joints was proposed. 展开更多
关键词 ferritic/austenitic dissimilar steel welded joint interfacial microstructure AGING nickel-based filler metal mechanism of premature failures
下载PDF
Microstructural Evolution on the T91 Dissimilar Metal Joints during Creep Rupture Tests
20
作者 GuangminLUO JianshengWU QingsenMENG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第4期383-386,共4页
T91 steel is one of the new materials presently employed in power plant pipe components. The creep rupture strength and microstructure of the T91+10CrMo910 and T91+13CrMo44 welded joints were analyzed during creep rup... T91 steel is one of the new materials presently employed in power plant pipe components. The creep rupture strength and microstructure of the T91+10CrMo910 and T91+13CrMo44 welded joints were analyzed during creep rupture tests. Creep transgranular ductile rupture occurred at the 10CrMo910 matrix in the T91+10CrMo910 welded joints and creep intergranular brittle rupture occurred at the 13CrMo44 HAZ in the T91+13CrMo44 joints. Microhardness measurements showed high hardness at the heat affected zone (HAZ) of T91 and a sharply drop at the 13CrMo44 HAZ during creep rupture. The metallographic tests showed that no obvious microstructure degradation was observed in the 10CrMo910 HAZ and matrix, while creep cracks appeared at the 13CrMo44 HAZ. T91 steel had relatively high creep resistant strength in the welded joints tested. Recovery occurred in the T91 HAZ with the growth of subgrain size and the decrease of dislocation density during creep. It was concluded that the dissimilar joints of T91 and low alloy heat-resistant steel should have close creep strength matching to increase the service life of the overall joints at elevated temperature. 展开更多
关键词 T91 steel dissimilar metal joint Creep rupture test
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部