Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed ...Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed algorithm combines the make-to-order (MTO) and charge optimization planning (COP) of the steel melting shop in the production of target steel composition. Using a system-level approach, the unit operations involved in the melting process were analyzed with the purpose of initial charge calculation, prevailing alloy charge prediction and optimizing the sequence of melt chemistry modification. The model performance was established using real-time production data from a cast iron-based foundry with a 1- and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. A simulation engine (CastMELT) was developed in Java IDE with a MySQL database for continuous interaction with changing process parameters to run the model for validation. The comparison between the model prediction and production results was analyzed for charge prediction, melt modification and ferroalloy optimization and possible cost savings. The model performance for elemental charge prediction and calculation purpose with respect to the charge input (at overall scrap meltdown) gave R-squared, Standard Error, Pearson correlation and Significance value of (0.934, 0.06, 0.97, 0.0003) for Carbon prediction, (0.962, 0.06, 0.98, 0.00009) for Silicon prediction, (0.999, 0.048, 0.999, 9E -11) for Manganese Prediction, and (0.997, 0.076, 0.999, 6E -7) for Chromium prediction respectively. Correlation analysis for melt modification (after charging of ferroalloy) using the model for after-alloying spark analysis compared with the target chemistry is at 99.82%. The results validate the suitability of the developed model as a functional system of induction furnace melting for combined charge calculation and melt optimization Techno-economic evaluation results showed that 0.98% - 0.25% ferroalloy saving per ton of melt is possible using the model. This brings about an annual production cost savings of 100,000 $/y in foundry A (medium carbon steel) and 20,000 $/y in foundry B (cast iron) on the use of different ferroalloy materials.展开更多
The effect of ground steel-making slag on microstructure and composition of hydration products of ordinary Portland cement (OPC) was investigated by mercury intrusion porosimetry (MIP),X-ray diffraction (XRD) and diff...The effect of ground steel-making slag on microstructure and composition of hydration products of ordinary Portland cement (OPC) was investigated by mercury intrusion porosimetry (MIP),X-ray diffraction (XRD) and differential thermal analysis (DTA).Results show that ground steel-making slag is a kind of high activity mineral additives and it can raise the longer-age strength of OPC mortar.The total porosity and average pore diameter of OPC paste with ground steel-making slag increase with the increase of the amount of ground steel-making slag replacing OPC at various ages,while after 28 days most pores in OPC paste with ground steel-making slag do not influence the strength because the diameter of those pores is in the rang of 20 to 50nm.The hydration mechanism of ground steel-making slag is similar to that of OPC but different from that of fly ash and blast furnace slag.The hydration products of ground steel-making slag contain quite a lot of Ca(OH) 2 in long age.展开更多
To research the possibility of steel-making dust as a kind of mineral filler in asphalt mixture, two steel-making dusts and one ordinary mineral filler were adopted. The specific density, specific surface area, finene...To research the possibility of steel-making dust as a kind of mineral filler in asphalt mixture, two steel-making dusts and one ordinary mineral filler were adopted. The specific density, specific surface area, fineness modulus and mineralogy component of the dusts were tested. Scanning electron microscopy(SEM) was carried out to research the microstructure of the dusts; dynamic shear rheological(DSR) test and time sweep test were used to research the high temperature and fatigue performance of asphalt mortars containing steel-making dust. The experimental results indicate that, compared with ordinary mineral filler, steel-making dusts have more active ingredients, difference surface characteristics and micro-structure. Furthermore, the high temperature and fatigue performance of steel-making dusts corresponding asphalt mortars are superior to those of reference group. Therefore, the steel-making dust would be an alternative to the ordinary mineral filler to improve the performance of asphalt mortars and reduce the harm of the dusts to the environment at the same time.展开更多
This paper presents the erosion results of the AISI H13 steel impinged by resin-bonded silica sand, using a testing rig that closely simulates the real blowing conditions during industrial core-making. Steel specimens...This paper presents the erosion results of the AISI H13 steel impinged by resin-bonded silica sand, using a testing rig that closely simulates the real blowing conditions during industrial core-making. Steel specimens were heat treated to obtain hardness of 294, 445 and 595 HV200 (29, 45 and 55 HRC). Erosion tests were carried out at impingement angles from 20° to 90° and air drag pressures of 1.38, 2.07 and 2.76 bar (20, 30 and 40 psi). The main results are summarized as follows:(i) The harder material, the lower erosion;(ii) the maximum erosion rate is at 30°;(iii) Little difference in erosion rate at impact angle of 60° and 90° for a constant pressure tested regardless of the hardness level;(iv) As the pressure increases, so does the erosion rate, being more sensitive for low impact angles. Finally, a differential form of the general erosion equation is applied on a practical core-making case to evaluate the erosion rate of the H13 steel at 30° and 90° impingement angles.展开更多
Based on the refractories research of Baosteel, the demands for refractories from the developing steel-making technology as high security, high efficiency, energy saving and environment .friendly are introduced.
Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro...Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.展开更多
In the past 25 years in China, to meet with the rapid increase in steel production accompanied by adoption of advanced metallurgical technologies, there has been fast development of China' s refractories industry in ...In the past 25 years in China, to meet with the rapid increase in steel production accompanied by adoption of advanced metallurgical technologies, there has been fast development of China' s refractories industry in production capacity, in quality improvement and in development of new products. Sophisticated high performance refractory materials mainly based on our rich reserves of magncsite, bauxite and flake graphite have been developed, such as carbon-bonded products, high purity oxide products, bauxite-based low creep and high strength high alumina bricks and LC, ULC and ZC castables. They have been used in blast furnaces, BOFs, EAFs, secondary refining and continuous casting with considerable improvement in service pecformance.展开更多
The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The ef...The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The effect of impact velocity on EC behavior of 17 4PH steels at different aging temperatures was analyzed. Surface micrographs of the specimens after E C test were observed by using scanning electron microscope (SEM). The results showed that under the condition of the same solution heat treatment, when aging temperature ranged from 400 ℃ to 610℃, the hardness reached the highest value near the temperature 460℃. The characteristics of E-C for 17-4PH stainless steels at different aging temperatures were as follows: pure erosion (wear) was dominant, corrosion was subordinate and at the same time corrosion promoted erosion. The effect of aging temperature on E-C rate of 17-4PH steels was not significant at low impact velocity, but it was found that E-C resistance of 17-4PH steels aged near 460℃ was the most excellent due to the best precipitation strengthening effect of fine and dispersed e-Cu phase. With a prerequisite of appropriate corrosion resistance, the precipitation hardening could significantly improve the E-C resistance of the materials.展开更多
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,...The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ...展开更多
The relationship between the microstructure transformation of type 17-4 PH stainless steel and the aging hardening behavior was investigated. The results showed that, when 17-4 PH stainless steel aging at 595℃, the b...The relationship between the microstructure transformation of type 17-4 PH stainless steel and the aging hardening behavior was investigated. The results showed that, when 17-4 PH stainless steel aging at 595℃, the bulk hardness of samples attains its peak value (42.5 HRC) for about 20 min, and then decreases at all time. TEM revealed the microstructure corresponding with peak hardness is that the fine spheroid-shape copper with the fcc crystal structure and the fiber-shape secondary carbide M23C6 precipitated from the lath martensite matrix. Both precipitations of copper and M23C6 are the reasons for strengthening of the alloy at this temperature. With the extension of holding time at this temperature, the copper and secondary carbide grow and lose the coherent relationship with the matrix, so the bulk hardness of samples decreases.展开更多
In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in ...In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.展开更多
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy...Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.展开更多
Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The si...Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.展开更多
Steel 20Mn23AlV is a type of high aluminum steel with a very low ladle free-opening rate. The aluminum composition of 20Mn23AlV ranges from 1.6% to 2.45% ,which is significantly higher than other types of steel. Accor...Steel 20Mn23AlV is a type of high aluminum steel with a very low ladle free-opening rate. The aluminum composition of 20Mn23AlV ranges from 1.6% to 2.45% ,which is significantly higher than other types of steel. According to the real condition of 40 t ladle in steel-making plant of Baosteel Special Steel Company, previous works show that the key factors affecting the ladle free-opening rate of high aluminum steel in continuous casting are:sand material, accessories baking, ladle nozzle cleaning, the process and amount of adding sand, and the rate of argon stirring during refining. Therefore, improving the ladle filler sand quality, baking all of the raw materials, controlling the addition of ladle filler sand, cleaning the ladle nozzle, and optimizing argon stirring during the refining process can resolve the problem of a low ladle free-opening rate of high aluminum steel caused by the long ladle time of liquid steel.展开更多
Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of ...Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of strain.±0.5 % to±1.5 %,the three processes of cyclic hardening,cyclic saturation and cyclic softening were observed.In the same amplitude of strain,the peak stress of the samples pre-treated by DSA is higher than that of solid-solu- tion and cold working pre-treatment,but no remarkable differences of the fatigue lives of them were found.TEM observation shows that the uniform and stable dislocation networks with high density form after DSA pre-treatment,which increases the cyclic peak stress.The cyclic softening results from the low dislocation density and elongated cell structure with low energy.展开更多
EVA plastic film is the key material for V-process. Through decades of research, special EVA film for V-process has been produced. The film has adequate elongation; its maximum is about 800% in longitudinal direction ...EVA plastic film is the key material for V-process. Through decades of research, special EVA film for V-process has been produced. The film has adequate elongation; its maximum is about 800% in longitudinal direction and 750% in transversal direction. The single width of the film is 2.8 m and the double width is 5.6 m, which is the widest sheet film for V-process in China. Sheets with different thickness ranging from the thickest 0.35 mm to the thinnest 0.08 mm can meet different demands in China. The film can be used not only for V-process of iron castings, but also for the manganese steel railway frog, steel rocking support and side frame castings for train and the steel bridge box for engine truck.展开更多
The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows ...The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.展开更多
文摘Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed algorithm combines the make-to-order (MTO) and charge optimization planning (COP) of the steel melting shop in the production of target steel composition. Using a system-level approach, the unit operations involved in the melting process were analyzed with the purpose of initial charge calculation, prevailing alloy charge prediction and optimizing the sequence of melt chemistry modification. The model performance was established using real-time production data from a cast iron-based foundry with a 1- and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. A simulation engine (CastMELT) was developed in Java IDE with a MySQL database for continuous interaction with changing process parameters to run the model for validation. The comparison between the model prediction and production results was analyzed for charge prediction, melt modification and ferroalloy optimization and possible cost savings. The model performance for elemental charge prediction and calculation purpose with respect to the charge input (at overall scrap meltdown) gave R-squared, Standard Error, Pearson correlation and Significance value of (0.934, 0.06, 0.97, 0.0003) for Carbon prediction, (0.962, 0.06, 0.98, 0.00009) for Silicon prediction, (0.999, 0.048, 0.999, 9E -11) for Manganese Prediction, and (0.997, 0.076, 0.999, 6E -7) for Chromium prediction respectively. Correlation analysis for melt modification (after charging of ferroalloy) using the model for after-alloying spark analysis compared with the target chemistry is at 99.82%. The results validate the suitability of the developed model as a functional system of induction furnace melting for combined charge calculation and melt optimization Techno-economic evaluation results showed that 0.98% - 0.25% ferroalloy saving per ton of melt is possible using the model. This brings about an annual production cost savings of 100,000 $/y in foundry A (medium carbon steel) and 20,000 $/y in foundry B (cast iron) on the use of different ferroalloy materials.
文摘The effect of ground steel-making slag on microstructure and composition of hydration products of ordinary Portland cement (OPC) was investigated by mercury intrusion porosimetry (MIP),X-ray diffraction (XRD) and differential thermal analysis (DTA).Results show that ground steel-making slag is a kind of high activity mineral additives and it can raise the longer-age strength of OPC mortar.The total porosity and average pore diameter of OPC paste with ground steel-making slag increase with the increase of the amount of ground steel-making slag replacing OPC at various ages,while after 28 days most pores in OPC paste with ground steel-making slag do not influence the strength because the diameter of those pores is in the rang of 20 to 50nm.The hydration mechanism of ground steel-making slag is similar to that of OPC but different from that of fly ash and blast furnace slag.The hydration products of ground steel-making slag contain quite a lot of Ca(OH) 2 in long age.
基金Funded by the National Natural Science Foundation of China(51778482)
文摘To research the possibility of steel-making dust as a kind of mineral filler in asphalt mixture, two steel-making dusts and one ordinary mineral filler were adopted. The specific density, specific surface area, fineness modulus and mineralogy component of the dusts were tested. Scanning electron microscopy(SEM) was carried out to research the microstructure of the dusts; dynamic shear rheological(DSR) test and time sweep test were used to research the high temperature and fatigue performance of asphalt mortars containing steel-making dust. The experimental results indicate that, compared with ordinary mineral filler, steel-making dusts have more active ingredients, difference surface characteristics and micro-structure. Furthermore, the high temperature and fatigue performance of steel-making dusts corresponding asphalt mortars are superior to those of reference group. Therefore, the steel-making dust would be an alternative to the ordinary mineral filler to improve the performance of asphalt mortars and reduce the harm of the dusts to the environment at the same time.
基金financially supported by NEMAK S.A. and Industria Meccanica Bassi Luigi&Co
文摘This paper presents the erosion results of the AISI H13 steel impinged by resin-bonded silica sand, using a testing rig that closely simulates the real blowing conditions during industrial core-making. Steel specimens were heat treated to obtain hardness of 294, 445 and 595 HV200 (29, 45 and 55 HRC). Erosion tests were carried out at impingement angles from 20° to 90° and air drag pressures of 1.38, 2.07 and 2.76 bar (20, 30 and 40 psi). The main results are summarized as follows:(i) The harder material, the lower erosion;(ii) the maximum erosion rate is at 30°;(iii) Little difference in erosion rate at impact angle of 60° and 90° for a constant pressure tested regardless of the hardness level;(iv) As the pressure increases, so does the erosion rate, being more sensitive for low impact angles. Finally, a differential form of the general erosion equation is applied on a practical core-making case to evaluate the erosion rate of the H13 steel at 30° and 90° impingement angles.
文摘Based on the refractories research of Baosteel, the demands for refractories from the developing steel-making technology as high security, high efficiency, energy saving and environment .friendly are introduced.
基金Foundation item:Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075189) supported by the National Natural Science Foundation of China
文摘Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.
文摘In the past 25 years in China, to meet with the rapid increase in steel production accompanied by adoption of advanced metallurgical technologies, there has been fast development of China' s refractories industry in production capacity, in quality improvement and in development of new products. Sophisticated high performance refractory materials mainly based on our rich reserves of magncsite, bauxite and flake graphite have been developed, such as carbon-bonded products, high purity oxide products, bauxite-based low creep and high strength high alumina bricks and LC, ULC and ZC castables. They have been used in blast furnaces, BOFs, EAFs, secondary refining and continuous casting with considerable improvement in service pecformance.
文摘The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The effect of impact velocity on EC behavior of 17 4PH steels at different aging temperatures was analyzed. Surface micrographs of the specimens after E C test were observed by using scanning electron microscope (SEM). The results showed that under the condition of the same solution heat treatment, when aging temperature ranged from 400 ℃ to 610℃, the hardness reached the highest value near the temperature 460℃. The characteristics of E-C for 17-4PH stainless steels at different aging temperatures were as follows: pure erosion (wear) was dominant, corrosion was subordinate and at the same time corrosion promoted erosion. The effect of aging temperature on E-C rate of 17-4PH steels was not significant at low impact velocity, but it was found that E-C resistance of 17-4PH steels aged near 460℃ was the most excellent due to the best precipitation strengthening effect of fine and dispersed e-Cu phase. With a prerequisite of appropriate corrosion resistance, the precipitation hardening could significantly improve the E-C resistance of the materials.
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.
基金supported by the National Natural Science Foundation of China (50871035)the Ph.D. Programs Foundation of Ministry of Education of China (20060213017)
文摘The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ...
基金This work was financially supported by the Key Nuclear Fuel and Nuclear Materials Laboratory of China(No.51481080104ZS8501).
文摘The relationship between the microstructure transformation of type 17-4 PH stainless steel and the aging hardening behavior was investigated. The results showed that, when 17-4 PH stainless steel aging at 595℃, the bulk hardness of samples attains its peak value (42.5 HRC) for about 20 min, and then decreases at all time. TEM revealed the microstructure corresponding with peak hardness is that the fine spheroid-shape copper with the fcc crystal structure and the fiber-shape secondary carbide M23C6 precipitated from the lath martensite matrix. Both precipitations of copper and M23C6 are the reasons for strengthening of the alloy at this temperature. With the extension of holding time at this temperature, the copper and secondary carbide grow and lose the coherent relationship with the matrix, so the bulk hardness of samples decreases.
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundations of China (Grants 11172304 and 11202210)
文摘In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.
文摘Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.
基金Financial assistance from Defence Research and Development Organisation
文摘Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.
文摘Steel 20Mn23AlV is a type of high aluminum steel with a very low ladle free-opening rate. The aluminum composition of 20Mn23AlV ranges from 1.6% to 2.45% ,which is significantly higher than other types of steel. According to the real condition of 40 t ladle in steel-making plant of Baosteel Special Steel Company, previous works show that the key factors affecting the ladle free-opening rate of high aluminum steel in continuous casting are:sand material, accessories baking, ladle nozzle cleaning, the process and amount of adding sand, and the rate of argon stirring during refining. Therefore, improving the ladle filler sand quality, baking all of the raw materials, controlling the addition of ladle filler sand, cleaning the ladle nozzle, and optimizing argon stirring during the refining process can resolve the problem of a low ladle free-opening rate of high aluminum steel caused by the long ladle time of liquid steel.
文摘Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of strain.±0.5 % to±1.5 %,the three processes of cyclic hardening,cyclic saturation and cyclic softening were observed.In the same amplitude of strain,the peak stress of the samples pre-treated by DSA is higher than that of solid-solu- tion and cold working pre-treatment,but no remarkable differences of the fatigue lives of them were found.TEM observation shows that the uniform and stable dislocation networks with high density form after DSA pre-treatment,which increases the cyclic peak stress.The cyclic softening results from the low dislocation density and elongated cell structure with low energy.
文摘EVA plastic film is the key material for V-process. Through decades of research, special EVA film for V-process has been produced. The film has adequate elongation; its maximum is about 800% in longitudinal direction and 750% in transversal direction. The single width of the film is 2.8 m and the double width is 5.6 m, which is the widest sheet film for V-process in China. Sheets with different thickness ranging from the thickest 0.35 mm to the thinnest 0.08 mm can meet different demands in China. The film can be used not only for V-process of iron castings, but also for the manganese steel railway frog, steel rocking support and side frame castings for train and the steel bridge box for engine truck.
基金supported by the Key State Science and Technology Projects(Grant No.2011ZX04016-061 and No.2012ZX06004-001-001-005)
文摘The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.