Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers a...Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers and soft clay seabeds. This included the STRIDE (steel risers in deepwater environments) and CARISIMA (catenary riser soil interaction model for global riser analysis) joint jndustry jrogram's test data as well as information from existing papers.展开更多
This paper presents fatigue characteristic analysis of a deepwater steel catenary riser (SCR) under ambient excitations. The SCR involves complex nonlinear dynamic behaviors, especially at the touchdown point (TDP...This paper presents fatigue characteristic analysis of a deepwater steel catenary riser (SCR) under ambient excitations. The SCR involves complex nonlinear dynamic behaviors, especially at the touchdown point (TDP) where the riser first touches the seafloor. Owing to the significant interaction with soil, the touchdown zone is difficnlt to be modeled. Based on Lumped-Mass method and P-y curve, nonlinear springs are used to simulate the SCR-seabed coupled interaction. In case studies, an SCR's dynamic features have been obtained by transient analysis and the structure fatigue assessment has been carried out by S-N approach. The comparative analysis shows that the TDP is the key location where soil-riser interaction rises steeply and minimum fatigue life occurs. Parameters such as ocean environment loads, vessel motions, riser material and geometric parameters are discussed. The results indicate that the vessel motion is the principal factor for the structure fatigue life distribution.展开更多
In the present study, the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition. Connected with the riser and the platform, stress joint at the vessel h...In the present study, the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition. Connected with the riser and the platform, stress joint at the vessel hang-off position should be one of the main critical design challenges for a steel catenary riser (SCR) in deepwater. When the riser is under a high pressure and deepwater working condition, the stress state for the joint is more complex, and the fatigue damage is easy to occur at this position. Stress joint discussed in this paper includes two types: Tapered Stress Joint (TSJ) and Sleeved Stress Joint (SSJ), and multiaxial fatigue analysis results are given for comparison. Global dynamic analysis for an SCR is performed first, and then the local boundary conditions obtained from the previous analysis are applied to the stress joint FE model for the later dynamic and multiaxial fatigue analysis. Results indicate that the stress level is far lower than the yield limit of material and the damage induced by fatigue needs more attention. Besides, the damage character of the two types of stress joints differs: for TSJ, the place where the stress joint connects with the riser is easy to occur fatigue damage; for SSJ, the most probable position is at the place where the end of the inner sleeve pipe contacts with the riser body. Compared with SSJ, TSJ shows a higher stress level but better fatigue performance, and it will have a higher material cost. In consideration of various factors, designers should choose the most suitable type and also geometric parameters.展开更多
Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flow...Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flows, is critical to ensure personnel and asset safety. In this study, a special global coordinate-based FEM rod model was adopted to identify and quantify the effects of internal flow and hydrostatic pressure on both flexible and deepwater steel catenary risers, with emphasis on the latter. By incorporating internal flow induced forces into the model, it was found that the internal flow contributes a new term to the effective tension expression. For flexible risers in shallow water, internal flow and hydrostatic pressure made virtually no change to effective tension by merely altering the riser wall tension. In deep water the internal pressure wielded a dominant role in governing the riser effective tension and furthering the static configuration, while the effect of inflow velocity was negligible. With respect to the riser seabed interaction, both the seabed support and friction effect were considered, with the former modeled by a nonlinear quadratic spring, allowing for a consistent derivation of the tangent stiffness matrix. The presented application examples show that the nonlinear quadratic spring is, when using the catenary solution as an initial static profile, an efficient way to model the quasi-Winkler-type elastic seabed foundation in this finite element scheme.展开更多
A prediction model of the deepwater steel catenary riser VIV is proposed based on the forced oscillation test data, taking into account the riser-seafloor interaction for the cross-flow VIV-induced fatigue damage at t...A prediction model of the deepwater steel catenary riser VIV is proposed based on the forced oscillation test data, taking into account the riser-seafloor interaction for the cross-flow VIV-induced fatigue damage at touch-down point (TDP). The model will give more reasonable simulation of SCR response near TDP than the previous pinned truncation model. In the present model, the hysteretic riser-soil interaction model is simplified as the linear spring and damper to simulate the seafloor, and the damping is obtained according to the dissipative power during one periodic riser-soil interaction. In order to validate the model, the comparison with the field measurement and the results predicted by Shear 7 program of a full-scale steel catenary riser is carried out. The main induced modes, mode frequencies and response amplitude are in a good agreement. Furthermore, the parametric studies are carried out to broaden the understanding of the fatigue damage sensitivity to the upper end in-plane offset and seabed characteristics. In addition, the fatigue stress comparison at TDP between the truncation riser model and the present full riser model shows that the existence of touch-down zones is very important for the fatigue damage assessment of steel catenary riser at TDP.展开更多
This work aimed to demonstrate possibilities for both active and passive control of the vortex-induced vibration and fatigue life of steel catenary risers via an analysis of the self-organization and evolution of the ...This work aimed to demonstrate possibilities for both active and passive control of the vortex-induced vibration and fatigue life of steel catenary risers via an analysis of the self-organization and evolution of the structural vibration based on synergetic theory. An analysis of the complex interrelated and synergistic relationship between the order parameter and the fast variable was performed, and the master equation of the nodal displacements was established as the order parameter for the evolution of the riser's structural vibration. Passive control methods include modifying the structure's elastic modulus, the internal fluid velocity, the top tension and the structural damping ratio, while an active control involves adjusting the external flow rate. Optimized parameters were obtained by analyzing the non-steady state solution of the master equation. The results show that the fatigue life greatly increases as the riser's elastic modulus decreases. In contrast, the fatigue life decreases with an increase of the internal fluid velocity. With an increase of the top tension, the vibration amplitudes and the number of modes may decrease, resulting in fewer bending stress cycles and a longer fatigue life. Furthermore, the structural damping ratio should be as large as possible. Finally, an active and passive control of the riser structure's response to vortex-induced vibration and its fatigue life can be achieved by carefully modifying the parameters mentioned above. The results may provide a theoretical framework for engineering practice concerning the design and control of steel catenary riser structures which are affected by vortex-induced vibration.展开更多
The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to signif...The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625 steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.展开更多
This paper aims to present the critical top tension for static equilibrium configurations of a steel catenary riser(SCR) by using the finite element method. The critical top tension is the minimum top tension that c...This paper aims to present the critical top tension for static equilibrium configurations of a steel catenary riser(SCR) by using the finite element method. The critical top tension is the minimum top tension that can maintain the equilibrium of the SCR. If the top tension is smaller than the critical value, the equilibrium of the SCR does not exist. If the top tension is larger than the critical value, there are two possible equilibrium configurations. These two configurations exhibit the nonlinear large displacement. The configuration with the smaller displacement is stable, while the one with larger displacement is unstable. The numerical results show that the increases in the riser's vertical distances, horizontal offsets, riser's weights, internal flow velocities, and current velocities increase the critical top tensions of the SCR. In addition, the parametric studies are also performed in order to investigate the limit states for the analysis and design of the SCR.展开更多
Steel catenary riser(SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole ...Steel catenary riser(SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration(VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow(CF) and in-line(IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.展开更多
In the present study, we simulated the reel-lay installation process of deepwater steel catenary risers(SCRs) using the finite element method and proposed multiaxial fatigue analysis for reeled SCRs. The reel-lay me...In the present study, we simulated the reel-lay installation process of deepwater steel catenary risers(SCRs) using the finite element method and proposed multiaxial fatigue analysis for reeled SCRs. The reel-lay method is one of the most efficient and economical pipeline installation methods. However, material properties of reeled risers may change, especially in the weld zone, which can affect the fatigue performance. Applying finite element analysis(FEA), we simulated an installation load history through the reel, aligner, and straightener and analyzed the property variations. The impact of weld defects during the installation process, lack of penetration and lack of fusion, was also discussed. Based on the FEA results, we used the Brown-Miller criterion combined with the critical plane approach to predict the fatigue life of reeled and non-reeled models. The results indicated that a weld defect has a significant influence on the material properties of a riser, and the reel-lay method can significantly reduce the fatigue life of SCRs. The analysis conclusion can help designers understand the mechanical performance of welds during reel-lay installation.展开更多
The present study establishes a simple numerical model for the coupled response of a steel catenary riser(SCR) subjected to coplanar vessel motion and vortex-induced vibration(VIV). Owing to the large deflection of th...The present study establishes a simple numerical model for the coupled response of a steel catenary riser(SCR) subjected to coplanar vessel motion and vortex-induced vibration(VIV). Owing to the large deflection of the SCR, the geometric nonlinearity is considered in this model. The hydrodynamic force comprises the excitation force and hydrodynamic damping, where the excitation force that only exists when the non-dimensional frequency is located in the lock-in range, is associated with the VIV. The hydrodynamic force model is validated based on the published VIV test data.As for the seabed resistance at the touchdown zone(TDZ), integrated with an initial seabed trench, the hysteretic feature is modeled. Based on the model, the study emphasizes on the coupled response characteristics near the touchdown point(TDP) induced by coplanar vessel heave and VIV, and analyzes the sensitivity of the coupled response to the heaving amplitude and frequency. It is found that with the increase of the heave amplitude and frequency, the VIV can be obviously mitigated, but the heave-related response in the coupled analysis seems to be close to that in the heave-only simulation. Finally, the fatigue damage near TDP is parametrically investigated based on the separate analysis and the coupled analysis. The results demonstrate that the coupled effect plays a significant role in the fatigue assessment near TDP. Besides, the proportion of the coupled effect accounting for the total fatigue damage decreases with the increasing seabed stiffness, while increases with the increasing seabed trench depth.展开更多
For studying the characteristics of Steel Catenary Riser (SCR), a simplified pinned-pinned cable model of vibration is established. The natural frequencies, the normalized mode shapes and mode curvatures of the SCR ...For studying the characteristics of Steel Catenary Riser (SCR), a simplified pinned-pinned cable model of vibration is established. The natural frequencies, the normalized mode shapes and mode curvatures of the SCR are calculated. The fatigue damage of the SCR can be obtained by applying the modal superposition method combined with the parameters of S -N curve. For analyzing the relation between the current velocity and the SCR's fatigue damage induced by the vortex-induced vibration, ten different current states are evaluated. Then, some useful conclusions are drawn, especially an important phenomenon is revealed that the maximum fatigue damage in the riser usually occurs near the area of the boundary ends.展开更多
The vortex induced vibration(VIV)of marine risers has been investigated by many researchers in experimental studies of a straight flexible riser model as well as a rigid cylinder to reveal the dynamic response charact...The vortex induced vibration(VIV)of marine risers has been investigated by many researchers in experimental studies of a straight flexible riser model as well as a rigid cylinder to reveal the dynamic response characteristic and the mechanics behind it.However,due to the limitation of experimental apparatus,very few studies are about the VIV of a steel catenary riser(SCR)which is with a complex geometry.To investigate the VTV features and to further develop the corresponding numerical predictions of a SCR under steady current,a large-scale model test of a SCR was towed in an ocean basin at various speeds.Fiber Bragg grating strain sensors are instrumented on the riser model to measure both in-plane and out-of-plane responses.The characteristics of oscillating amplitude and dominating frequency response,the phenomenon of mode competition and travelling wave and the fatigue damage of the steel catenary riser in inline and cross-flow direction under steady current are analyzed.展开更多
With the development of deepwater oil and gas exploration, Steel Catenary Risers(SCRs) become preferred risers for resource production, import and export. Vortex induced vibration(VIV) is the key problem encountered i...With the development of deepwater oil and gas exploration, Steel Catenary Risers(SCRs) become preferred risers for resource production, import and export. Vortex induced vibration(VIV) is the key problem encountered in the design of SCRs. In this study, a new model, the rigid swing model, is proposed based on the consideration of large curvature of SCRs. The sag bend of SCRs is assumed as a rigid swing system around the axis from the hanging point to the touch down point(TDP) in the model. The torque, produced by the lift force and the swing vector, provides the driving torque for the swing system, and the weight of SCRs provides the restoring torque. The simulated response of rigid swing is coupled with bending vibration, and then the coupling VIV model of SCRs is studied in consideration of bending vibration and rigid motion. The calculated results indicate that the rigid swing has a magnitude equal to that of bending vibration, and the rigid motion affects the dynamic response of SCRs and can not be neglected in the VIV analysis.展开更多
文摘Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers and soft clay seabeds. This included the STRIDE (steel risers in deepwater environments) and CARISIMA (catenary riser soil interaction model for global riser analysis) joint jndustry jrogram's test data as well as information from existing papers.
基金supported by the National Natural Science Foundation of China(Grant No.50739004)
文摘This paper presents fatigue characteristic analysis of a deepwater steel catenary riser (SCR) under ambient excitations. The SCR involves complex nonlinear dynamic behaviors, especially at the touchdown point (TDP) where the riser first touches the seafloor. Owing to the significant interaction with soil, the touchdown zone is difficnlt to be modeled. Based on Lumped-Mass method and P-y curve, nonlinear springs are used to simulate the SCR-seabed coupled interaction. In case studies, an SCR's dynamic features have been obtained by transient analysis and the structure fatigue assessment has been carried out by S-N approach. The comparative analysis shows that the TDP is the key location where soil-riser interaction rises steeply and minimum fatigue life occurs. Parameters such as ocean environment loads, vessel motions, riser material and geometric parameters are discussed. The results indicate that the vessel motion is the principal factor for the structure fatigue life distribution.
基金supported by the National Natural Science Foundation of China(Grant No.51009093)
文摘In the present study, the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition. Connected with the riser and the platform, stress joint at the vessel hang-off position should be one of the main critical design challenges for a steel catenary riser (SCR) in deepwater. When the riser is under a high pressure and deepwater working condition, the stress state for the joint is more complex, and the fatigue damage is easy to occur at this position. Stress joint discussed in this paper includes two types: Tapered Stress Joint (TSJ) and Sleeved Stress Joint (SSJ), and multiaxial fatigue analysis results are given for comparison. Global dynamic analysis for an SCR is performed first, and then the local boundary conditions obtained from the previous analysis are applied to the stress joint FE model for the later dynamic and multiaxial fatigue analysis. Results indicate that the stress level is far lower than the yield limit of material and the damage induced by fatigue needs more attention. Besides, the damage character of the two types of stress joints differs: for TSJ, the place where the stress joint connects with the riser is easy to occur fatigue damage; for SSJ, the most probable position is at the place where the end of the inner sleeve pipe contacts with the riser body. Compared with SSJ, TSJ shows a higher stress level but better fatigue performance, and it will have a higher material cost. In consideration of various factors, designers should choose the most suitable type and also geometric parameters.
基金Supported by the National High-tech Research and Development Program of China (863 Program) under Grant No. 2010AA09Z303the Key Project of National Natural Science Foundation of China (Grant No. 50739004)the National Natural Science Foundation of China (Grant No. 11002135)
文摘Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flows, is critical to ensure personnel and asset safety. In this study, a special global coordinate-based FEM rod model was adopted to identify and quantify the effects of internal flow and hydrostatic pressure on both flexible and deepwater steel catenary risers, with emphasis on the latter. By incorporating internal flow induced forces into the model, it was found that the internal flow contributes a new term to the effective tension expression. For flexible risers in shallow water, internal flow and hydrostatic pressure made virtually no change to effective tension by merely altering the riser wall tension. In deep water the internal pressure wielded a dominant role in governing the riser effective tension and furthering the static configuration, while the effect of inflow velocity was negligible. With respect to the riser seabed interaction, both the seabed support and friction effect were considered, with the former modeled by a nonlinear quadratic spring, allowing for a consistent derivation of the tangent stiffness matrix. The presented application examples show that the nonlinear quadratic spring is, when using the catenary solution as an initial static profile, an efficient way to model the quasi-Winkler-type elastic seabed foundation in this finite element scheme.
基金supported by the National Natural Science Foundation of China(Grant No.51009089)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100073120017)
文摘A prediction model of the deepwater steel catenary riser VIV is proposed based on the forced oscillation test data, taking into account the riser-seafloor interaction for the cross-flow VIV-induced fatigue damage at touch-down point (TDP). The model will give more reasonable simulation of SCR response near TDP than the previous pinned truncation model. In the present model, the hysteretic riser-soil interaction model is simplified as the linear spring and damper to simulate the seafloor, and the damping is obtained according to the dissipative power during one periodic riser-soil interaction. In order to validate the model, the comparison with the field measurement and the results predicted by Shear 7 program of a full-scale steel catenary riser is carried out. The main induced modes, mode frequencies and response amplitude are in a good agreement. Furthermore, the parametric studies are carried out to broaden the understanding of the fatigue damage sensitivity to the upper end in-plane offset and seabed characteristics. In addition, the fatigue stress comparison at TDP between the truncation riser model and the present full riser model shows that the existence of touch-down zones is very important for the fatigue damage assessment of steel catenary riser at TDP.
基金Financial support from the China Postdoctoral Science Foundation Fund (Grant No.2013M531563)the Qingdao Agricultural University High-Level Talents Research Fund (Grant No. 631424)is gratefully acknowledged
文摘This work aimed to demonstrate possibilities for both active and passive control of the vortex-induced vibration and fatigue life of steel catenary risers via an analysis of the self-organization and evolution of the structural vibration based on synergetic theory. An analysis of the complex interrelated and synergistic relationship between the order parameter and the fast variable was performed, and the master equation of the nodal displacements was established as the order parameter for the evolution of the riser's structural vibration. Passive control methods include modifying the structure's elastic modulus, the internal fluid velocity, the top tension and the structural damping ratio, while an active control involves adjusting the external flow rate. Optimized parameters were obtained by analyzing the non-steady state solution of the master equation. The results show that the fatigue life greatly increases as the riser's elastic modulus decreases. In contrast, the fatigue life decreases with an increase of the internal fluid velocity. With an increase of the top tension, the vibration amplitudes and the number of modes may decrease, resulting in fewer bending stress cycles and a longer fatigue life. Furthermore, the structural damping ratio should be as large as possible. Finally, an active and passive control of the riser structure's response to vortex-induced vibration and its fatigue life can be achieved by carefully modifying the parameters mentioned above. The results may provide a theoretical framework for engineering practice concerning the design and control of steel catenary riser structures which are affected by vortex-induced vibration.
文摘The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625 steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.
基金supported by the Thailand Research Fund(TRF)through the Royal Golden Jubilee Ph.D.Program(Grant No.PHD/0112/2553)the National Research University(NRU)initiative
文摘This paper aims to present the critical top tension for static equilibrium configurations of a steel catenary riser(SCR) by using the finite element method. The critical top tension is the minimum top tension that can maintain the equilibrium of the SCR. If the top tension is smaller than the critical value, the equilibrium of the SCR does not exist. If the top tension is larger than the critical value, there are two possible equilibrium configurations. These two configurations exhibit the nonlinear large displacement. The configuration with the smaller displacement is stable, while the one with larger displacement is unstable. The numerical results show that the increases in the riser's vertical distances, horizontal offsets, riser's weights, internal flow velocities, and current velocities increase the critical top tensions of the SCR. In addition, the parametric studies are also performed in order to investigate the limit states for the analysis and design of the SCR.
基金financially supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2010AA09Z303)the National Natural Science Foundation of China(Grant No.41174157)Shandong Province Scientific Research Foundation for Outstanding Young Scientists Program(Grant No.BS2013HZ014)
文摘Steel catenary riser(SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration(VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow(CF) and in-line(IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.
基金supported by the National Key Natural Science Foundation of China(Grant No.50739004)the National Natural Science Foundation of China(Grant Nos.51009093 and 51379005)
文摘In the present study, we simulated the reel-lay installation process of deepwater steel catenary risers(SCRs) using the finite element method and proposed multiaxial fatigue analysis for reeled SCRs. The reel-lay method is one of the most efficient and economical pipeline installation methods. However, material properties of reeled risers may change, especially in the weld zone, which can affect the fatigue performance. Applying finite element analysis(FEA), we simulated an installation load history through the reel, aligner, and straightener and analyzed the property variations. The impact of weld defects during the installation process, lack of penetration and lack of fusion, was also discussed. Based on the FEA results, we used the Brown-Miller criterion combined with the critical plane approach to predict the fatigue life of reeled and non-reeled models. The results indicated that a weld defect has a significant influence on the material properties of a riser, and the reel-lay method can significantly reduce the fatigue life of SCRs. The analysis conclusion can help designers understand the mechanical performance of welds during reel-lay installation.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51979129)。
文摘The present study establishes a simple numerical model for the coupled response of a steel catenary riser(SCR) subjected to coplanar vessel motion and vortex-induced vibration(VIV). Owing to the large deflection of the SCR, the geometric nonlinearity is considered in this model. The hydrodynamic force comprises the excitation force and hydrodynamic damping, where the excitation force that only exists when the non-dimensional frequency is located in the lock-in range, is associated with the VIV. The hydrodynamic force model is validated based on the published VIV test data.As for the seabed resistance at the touchdown zone(TDZ), integrated with an initial seabed trench, the hysteretic feature is modeled. Based on the model, the study emphasizes on the coupled response characteristics near the touchdown point(TDP) induced by coplanar vessel heave and VIV, and analyzes the sensitivity of the coupled response to the heaving amplitude and frequency. It is found that with the increase of the heave amplitude and frequency, the VIV can be obviously mitigated, but the heave-related response in the coupled analysis seems to be close to that in the heave-only simulation. Finally, the fatigue damage near TDP is parametrically investigated based on the separate analysis and the coupled analysis. The results demonstrate that the coupled effect plays a significant role in the fatigue assessment near TDP. Besides, the proportion of the coupled effect accounting for the total fatigue damage decreases with the increasing seabed stiffness, while increases with the increasing seabed trench depth.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50921001)the National Basic Research Program of China (973 Program, Grant No. 2010CB832700)
文摘For studying the characteristics of Steel Catenary Riser (SCR), a simplified pinned-pinned cable model of vibration is established. The natural frequencies, the normalized mode shapes and mode curvatures of the SCR are calculated. The fatigue damage of the SCR can be obtained by applying the modal superposition method combined with the parameters of S -N curve. For analyzing the relation between the current velocity and the SCR's fatigue damage induced by the vortex-induced vibration, ten different current states are evaluated. Then, some useful conclusions are drawn, especially an important phenomenon is revealed that the maximum fatigue damage in the riser usually occurs near the area of the boundary ends.
基金supported by the National Natural Science Foundation of China(Grant Nos.51490674,51825903).
文摘The vortex induced vibration(VIV)of marine risers has been investigated by many researchers in experimental studies of a straight flexible riser model as well as a rigid cylinder to reveal the dynamic response characteristic and the mechanics behind it.However,due to the limitation of experimental apparatus,very few studies are about the VIV of a steel catenary riser(SCR)which is with a complex geometry.To investigate the VTV features and to further develop the corresponding numerical predictions of a SCR under steady current,a large-scale model test of a SCR was towed in an ocean basin at various speeds.Fiber Bragg grating strain sensors are instrumented on the riser model to measure both in-plane and out-of-plane responses.The characteristics of oscillating amplitude and dominating frequency response,the phenomenon of mode competition and travelling wave and the fatigue damage of the steel catenary riser in inline and cross-flow direction under steady current are analyzed.
基金funded by the National Natural Science Foundation of China(51079136,51179179,51239008)
文摘With the development of deepwater oil and gas exploration, Steel Catenary Risers(SCRs) become preferred risers for resource production, import and export. Vortex induced vibration(VIV) is the key problem encountered in the design of SCRs. In this study, a new model, the rigid swing model, is proposed based on the consideration of large curvature of SCRs. The sag bend of SCRs is assumed as a rigid swing system around the axis from the hanging point to the touch down point(TDP) in the model. The torque, produced by the lift force and the swing vector, provides the driving torque for the swing system, and the weight of SCRs provides the restoring torque. The simulated response of rigid swing is coupled with bending vibration, and then the coupling VIV model of SCRs is studied in consideration of bending vibration and rigid motion. The calculated results indicate that the rigid swing has a magnitude equal to that of bending vibration, and the rigid motion affects the dynamic response of SCRs and can not be neglected in the VIV analysis.