期刊文献+
共找到3,014篇文章
< 1 2 151 >
每页显示 20 50 100
Cost Optimization of Steel Beam-to-Column Connections using AVOA
1
作者 Ziyu Wang Zhaoyang Ren 《Journal of Architectural Research and Development》 2024年第2期18-23,共6页
The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is ... The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is first determined,and the number of bolts needed by the corresponding steel type is referenced in Eurocode 3.Then,the bearing capacity of the joint can be calculated.The joint-bolt-AVOA model is established by substituting the bolt number required by the steel into the algorithm to obtain the optimal bolt number required while ensuring joint stability.The results show that the number of bolts required by the joint-bolt-AVOA model based on the stability of steel is lower than that calculated by Eurocode 3.Therefore,AVOA can effectively optimize the number of bolts needed in building connections and save resources. 展开更多
关键词 steel connections African vulture optimization algorithm Optimization of bolts
下载PDF
Analytical Investigation into the Rotational Performance of Glulam Bolted Beam-Column Connections under Coupled Bending Moment and Shear Force
2
作者 Xiaofeng Zhang Lisheng Luo +2 位作者 Youfu Sun Xinyue Cui Yongqiang Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第4期2033-2054,共22页
Considering the glulam beam-column connection form and the number of bolts,monotonic loading test and finite element analysis was carried out on 9 connection specimens in 3 groups to study the rotational performance a... Considering the glulam beam-column connection form and the number of bolts,monotonic loading test and finite element analysis was carried out on 9 connection specimens in 3 groups to study the rotational performance and failure mode of the connection.The test results revealed that compared with U-shaped connectors,T-shaped connectors can effectively improve the ductility of connections,and the increase in the number of bolts can reduce the initial stiffness and ductility of connections.By theoretical analysis,formulas for calculating the initial stiffness and ultimate moment of connections were deduced.Subsequently,the moment-rotation theoretical model of connections was established based on the formulas,which were validated according to the test data and simulation results.The proposed model can not only improve the current theoretical system of heavy-duty glulam beam-column structure but also provide a theoretical basis for calculating the mechanical properties of the glulam beam-column connection. 展开更多
关键词 beam-column connection mechanical properties STIFFNESS ultimate moment
下载PDF
Experimental Study of Moso Bamboo to-Steel Connections with Embedded Grouting Materials
3
作者 Shidong Nie Wei Fu +3 位作者 Hui Wang Di Wu Min Liu Junlong Wang 《Journal of Renewable Materials》 SCIE EI 2023年第3期1401-1423,共23页
Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates ... Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates and grouting materials were designed according to connection configurations with different bolt diameters and end distance of bolt holes,and their bearing capacities and failure modes were analyzed by static tension tests.According to the test results of all connectors,the failure modes of the specimens are divided into four categories,and the effects of bolt diameter and bolt hole end distance on the connection bearing capacity and failure mode are analyzed.The test results show that the deformation and failure process can be divided into four stages.The main influence factor of connector bearing capacity is bolt diameter.Connectors can be divided into four failure modes,and brittle failure can be avoided by adopting certain structural measures.Filling with grouting material can improve the bearing capacity of joints.Due to the large variability of bamboo,further experiments are needed. 展开更多
关键词 Moso bamboo connections embedded steel plates grouting materials bearing capacities failure modes
下载PDF
Seismic performance of interior precast concrete beam-column connections with T-section steel inserts under cyclic loading 被引量:15
4
作者 Rattapon Ketiyot Chayanon Hansapinyo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第2期355-369,共15页
An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/... An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/3-scale interior beam-column subassemblies,one monolithic concrete specimen and five precast concrete specimens were tested.One precast specimen was a simple connection for a gravity load resistant design.Other precast specimens were developed with different attributes to improve their seismic performance.The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior.Failure of columns and joints could be prevented,and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends,close to the column faces.For the precast specimens,the splitting crack along the longitudinal lapped splice was a major failure.The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models.However,the dowel bars connected to the steel inserts were too short to develop a bond.The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region. 展开更多
关键词 precast concrete beam-column connection cyclic loading
下载PDF
Seismic Behavior of Diaphragm-Through Connections of Concrete-Filled Square Steel Tubular Columns and H-Shaped Steel Beams 被引量:6
5
作者 荣彬 陈志华 +1 位作者 Apostolos Fafitis 苗纪奎 《Transactions of Tianjin University》 EI CAS 2013年第3期195-201,共7页
Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and us... Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections. 展开更多
关键词 concrete-filled square steel TUBULAR COLUMN H-shaped steel beam diaphragm-through connection seismic behavior load transfer mechanism
下载PDF
Shaking table test and numerical analysis of a 1:12 scale model of a special concentrically braced steel frame with pinned connections 被引量:7
6
作者 Yu Haifeng Zhang Wenyuan +1 位作者 Zhang Yaochun Sun Yusong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期51-63,共13页
This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical ... This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical main factory building of a large thermal power plant. In order to investigate the seismic performance of this type of structure, several ground motion accelerations with different levels for seismic intensity Ⅷ, based on the Chinese Code for Seismic Design of Buildings, were selected to excite the model. The results show that the design methods of the members and the connections are adequate and that the structural system will perform well in regions of high seismicity. In addition to the tests, numerical simulations were also conducted and the results showed good agreement with the test results. Thus, the numerical model is shown to be accurate and the beam element can be used to model this structural system. 展开更多
关键词 concentrically braced steel frame pinned connections shaking table test numerical analysis seismic performance
下载PDF
Influence of Axial Load Ratio on Shear Behavior of Through-Diaphragm Connections of Concrete-Filled Square Steel Tubular Columns 被引量:2
7
作者 张广泰 韩建红 +1 位作者 荣彬 Apostolos Fafitis 《Transactions of Tianjin University》 EI CAS 2015年第4期341-346,共6页
Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular c... Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular columns. The analysis reveals that smaller axial load ratio can improve the shear bearing capacity and ductility while larger axial load ratio will decrease the shear behavior of the through-diaphragm connections. The parametric studies indicate that the axial load ratio should be limited to less than 0.4 and its influence should be considered in the analysis and design of such connections. 展开更多
关键词 through-diaphragm connection concrete-filled square steel TUBULAR COLUMN AXIAL load ratio shearbearing capacity DUCTILITY
下载PDF
Effects of temperature change on elastic behavior of steel beams with semi-rigid connections 被引量:2
8
作者 蔡建国 冯健 韩运龙 《Journal of Central South University》 SCIE EI CAS 2010年第4期845-851,共7页
Based on the nonlinear displacement-strain relationship,the virtual work principle method was used to establish the nonlinear equilibrium equations of steel beams with semi-rigid connections under vertical uniform loa... Based on the nonlinear displacement-strain relationship,the virtual work principle method was used to establish the nonlinear equilibrium equations of steel beams with semi-rigid connections under vertical uniform loads and temperature change.Considering the non-uniform temperature distribution across the thickness of beams,the formulas for stresses and vertical displacements were presented.On the basis of a flowchart for analysis of the numerical example,the effect of temperature change on the elastic behavior of steel beams was investigated.It is found that the maximal stress is mainly influenced by axial temperature change,and the maximal vertical displacement is principally affected by temperature gradients.And the effect of temperature gradients on the maximal vertical displacement decreases with the increase of rotational stiffness of joints.Both the maximal stress and vertical displacement decrease with the increase of rotational stiffness of joints.It can be concluded that the effects of temperature changes and rotational stiffness of joints on the elastic behavior of steel beams are significant.However,the influence of rotational stiffness becomes smaller when the rotational stiffness is larger. 展开更多
关键词 steel beams semi-rigid connections STRESS DISPLACEMENT STIFFNESS elastic behavior temperature change virtual work principle
下载PDF
Influence of the column-to-beam flexural strength ratio on the failure mode of beam-column connections in RC frames 被引量:1
9
作者 Gong Maosheng Zuo Zhanxuan +2 位作者 Sun Jing He Riteng Zhao Yinan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期441-452,共12页
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ... The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes. 展开更多
关键词 strong column-weak beam column-to-beam flexural strength ratio reinforced concrete frame structure beam-column connection failure mode
下载PDF
Mechanical Properties of Moso Bamboo Connections with External Clamp Steel Plates 被引量:1
10
作者 Shidong Nie Song Ran +3 位作者 Di Wu Jieyu Chen Hui Wang Qike Wei 《Journal of Renewable Materials》 SCIE EI 2022年第2期487-510,共24页
The Moso bamboo,a renewable green building material used in various new green buildings,have received exten-sive attention with the promotion of the concept of green buildings.To explore the mechanical properties of M... The Moso bamboo,a renewable green building material used in various new green buildings,have received exten-sive attention with the promotion of the concept of green buildings.To explore the mechanical properties of Moso bamboo connections with external clamp steel plates,the 16 specimens were designed by changing the bolt diameters and the end distances of the bolt holes.Their static tension tests were conducted to investigate bearing capacities and failure modes of different connection configurations.Based on test results,three failure modes of these connections were obtained,including the shear failure of bolt shank,bearing failure of bolt hole and punch-ing shear failure of the Moso bamboo.The influence of bolt diameters and end distances of bolt holes on bearing capacities of the connections was quantitatively analyzed.Based on a simplified mechanical model,the analytical models were deduced for the bolt shear failure and the bearing failure of bolt holes.The results showed that the predictive values are in substantial agreement with the experimental results.Finally,the design and manufacturing suggestions are recommended for this Moso bamboo connections. 展开更多
关键词 Moso bamboo connections external clamp steel plates load-carrying capacities failure modes the 5%d offset method mechanical model
下载PDF
Key technology for construction of connection between steel pylonand concrete pile cap of middle pylon of Taizhou Bridge 被引量:1
11
作者 Sun Yuxiang Zhang Hong +2 位作者 Xiao Wenfu Huang Tao You Xinpeng 《Engineering Sciences》 EI 2012年第3期8-11,共4页
Taizhou Bridge is a suspension bridge with three pylons and two 1 080 m main spans. The middle pylon is a steel frame with longitudinal herringbone shape and lateral gate shape. The connection between steel pylon and ... Taizhou Bridge is a suspension bridge with three pylons and two 1 080 m main spans. The middle pylon is a steel frame with longitudinal herringbone shape and lateral gate shape. The connection between steel pylon and concrete pile cap is a key part to transfer the huge inner force from the pylon to the foundation. Its construction quality is a critical factor to the overall structural loading of the whole bridge ; therefore the contact ratio between the bearing steel plate of pylon and concrete pile cap is required to be over 75 %. The inclined joint surface in two directions, longitudinally at 39/1 920 and laterally at 1/4, posted a challenge to the construction work. A procedure test was carried out to find an optimal construction method by comparison, and finally the post-injection method was selected as it can meet the requirement of concrete strength and contact ratio at the connection. The successful application of the post-injection method in Taizhou Bridge can nrovide an examnle and reference for similar nroiects in the future. 展开更多
关键词 middle pylon connection steel pylon concrete pile cap contact ratio post-injection method
下载PDF
Effect of weld on design of steel moment-resisting connection reinforced with steel plates
12
作者 陈鹏 黎永 《Journal of Central South University》 SCIE EI CAS 2005年第S2期274-277,共4页
The foreign experimental and FEM research of steel moment-resisting connection reinforced with steel plates are introduced. The effect of weld on the connection design is studied in two ways including weld detail and ... The foreign experimental and FEM research of steel moment-resisting connection reinforced with steel plates are introduced. The effect of weld on the connection design is studied in two ways including weld detail and geometrical detail of steel plates contrast to the reference drawing of connection design in China. The research shows that the weld plays an important role in the design of connections. The welds connecting reinforced plates and beam/column flange and the plate geometry have direct influence on the performance of the connections reinforced with plates. The study is helpful to the application of design of steel moment-resisting connection with steel plates. 展开更多
关键词 steel moment-resisting connection steel PLATES WELD
下载PDF
Simplified seismic fatigue evaluation for rigid steel connections
13
作者 AymanA.Shama John B.Mander Stuart.S.Chen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第2期245-253,共9页
A simplified fatigue-life model is proposed for assessing the seismic inelastic rotational capacity of steel connections.First relations are developed for rigid steel connections under lateral loading.Next this is ext... A simplified fatigue-life model is proposed for assessing the seismic inelastic rotational capacity of steel connections.First relations are developed for rigid steel connections under lateral loading.Next this is extended to account for the effects of the welded steel moment frame(WSMF)connections of the so-called pre-Northridge type.The seismic fatigue theory is validated against experimental results.The experiments were conducted under increasing ductility amplitudes until the onset of fiacture.Miner'rule was used to convert the test results to given an equivalent constant amplitude cyclic fatigue life.Satisfactory agreement is obtained when comparing the experimental observations with the theoretical predictions. 展开更多
关键词 FATIGUE cyclic load SEISMIC pile-to-cap moment frames connectionS steel
下载PDF
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
14
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 Grain boundary engineering Ferritic/martensitic steel Prior austenite grain boundary character distribution Grain boundary connectivity Intergranular damage resistance
下载PDF
Experimental study on full-scale steel beam-to-column moment connections
15
作者 钱稼茹 余海群 +3 位作者 颜锋 董海 李建华 刘月明 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第2期311-323,共13页
Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one... Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed. 展开更多
关键词 steel beam-to-column moment connection DUCTILITY plastic rotational experiment study
下载PDF
Analysis of Steel Connections to Resist Progressive Collapse
16
作者 Yanglin Gong Chen Zhang Jian Deng 《World Journal of Engineering and Technology》 2019年第2期10-20,共11页
This paper presented a methodology for the analysis and design of steel connections under a double-span connection within the context of preventing progressive collapse. First, various connection models were described... This paper presented a methodology for the analysis and design of steel connections under a double-span connection within the context of preventing progressive collapse. First, various connection models were described and their pros and cons were provided. Then, the load-displacement characteristics of a component-based spring model were described. Thirdly, an experi-mental study on the behaviors of shear tab connections under tension was presented. The main sources of the deformation capacity of the shear tab connections were identified. Finally, a design example of a shear tab connection was provided to illustrate the methodology. 展开更多
关键词 steel steel connections Shear TAB connection PROGRESSIVE COLLAPSE connection Robustness
下载PDF
Progressive Collapse Analysis of Concrete-Filled Steel Tubular Frames with Semi-rigid Connections
17
作者 徐嫚 张素梅 +1 位作者 郭兰慧 王玉银 《Transactions of Tianjin University》 EI CAS 2011年第6期461-468,共8页
A 9-story concrete-filled steel tubular frame model is used to analyze the response of joints due to sudden column loss. Three different models are developed and compared to study the efficiency and feasibility of sim... A 9-story concrete-filled steel tubular frame model is used to analyze the response of joints due to sudden column loss. Three different models are developed and compared to study the efficiency and feasibility of simulation, which include substructure model, beam element model and solid element model. The comparison results show that the substructure model has a satisfying capability, calculation efficiency and accuracy to predict the concerned joints as well as the overall framework. Based on the substructure model and a kind of semi-rigid connection for concretefilled square hollow section steel column proposed in this paper, the nonlinear dynamic analyses are conducted by the alternate path method. It is found that the removal of the ground inner column brings high-level joint moments and comparatively low-level axial tension forces. The initial stiffness and transmitted ultimate moment of the semi-rigid connection are the main factors that influence the frame behavior, and their lower limit should be guaranteed to resist collapse. Reduced ultimate moment results in drastic displacement and axial force development, which may bring progressive collapse. The higher initial stiffness ensures that the structure has a stronger capacity to resist progressive collapse. 展开更多
关键词 substructure model concrete-filled steel tubular frame semi-rigid connection alternate path method dynamic analysis
下载PDF
Experimental Study on Properties of Masonry Infill Walls Connected to Steel Frames with Different Connection Details
18
作者 Mehdi Kahrizi Mehrzad TahamouliRoudsari 《Structural Durability & Health Monitoring》 EI 2020年第2期165-185,共21页
The properties of infills and the way they are connected to frames may have significant effects on the seismic behavior of the structure.This study pre-sents an experimental study on evaluation and testing of five sin... The properties of infills and the way they are connected to frames may have significant effects on the seismic behavior of the structure.This study pre-sents an experimental study on evaluation and testing of five single story,single bay samples with the scale 1:3.This study strives to evaluate the behavior of masonry infill walls encased in steel frames,with emphasis on diferent details of the connection of the wall to the frame.Four frames with masonry infills and one frame without infill are experimented on by apply ing lateral load to their upper beams.Different details of the connection between the infill and the frame including anchorless wall within the frame,connecting the frame and the infill using separating vertical angles,steel rebars embedded in the infill wall and also using Added Damping And Siffness(ADAS)elements between the infill and the frame were investigated.The results indicate that the manner in which the infill and the frame are connected not only can significantly affect the crack fomation pattern and the failure modes of the infill wall,it's also alters the stiffness,the strength,the ductility,the out-of-plane deformation,and the amount of energy dis-sipation of the frame.Furthermore,not only using the ADAS yielding damper in the connection between the infill and the frame increases ductility and prevents the load-displacement diagram from plummeting,it also can be used in regions with medium to high relative seismic risk given that it can be replaced after the occurrence of earthquakes. 展开更多
关键词 Masonry infll wall steel framne wall-fame connection experimental study
下载PDF
Seismic Behavior of Steel Reinforced Ultra High Strength Concrete Column and Reinforced Concrete Beam Connection
19
作者 闫长旺 贾金青 张菊 《Transactions of Tianjin University》 EI CAS 2010年第4期309-316,共8页
To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens... To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application. 展开更多
关键词 seismic performance steel reinforced ultra high strength concrete connection applied axial load ratio volumetric stirrup ratio
下载PDF
Structural Analysis and Design of Steel Connections Using Component-Based Finite Element Model
20
作者 Lubomir Sabatka Frantisek Wald +2 位作者 Jaromir Kabelac Drahoslav Kolaja Martin Pospisil 《Journal of Civil Engineering and Architecture》 2015年第8期895-901,共7页
This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite eleme... This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite elements models). Procedure for composition of a model based on usual production process is used in CBFEM. Its results are compared to those obtained by component method for portal frame eaves moment connection with good agreement. Design of moment resistant column base is demonstrated by a case loaded by two directional bending moments and normal force. Interaction of several connections in one complex joint is explained in the last example. This paper aims to provide structural engineers with a new tool to effectively analyze and design various joints of steel structures. 展开更多
关键词 steel structures structural connections finite element model component model analytical model design model.
下载PDF
上一页 1 2 151 下一页 到第
使用帮助 返回顶部