期刊文献+
共找到1,736篇文章
< 1 2 87 >
每页显示 20 50 100
Experimental research on shear carrying capacity of H-steel concrete composite beam with small shear span ratio 被引量:1
1
作者 王钧 赵天石 +1 位作者 谢恒燕 郑文忠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期398-400,共3页
In order to investigate shear carrying capacity of H-steel concrete beam with small shear span ratio,shear test on 5 H-steel concrete composite beams with small span ratio (from 0.7 to 1.1) are reported,including test... In order to investigate shear carrying capacity of H-steel concrete beam with small shear span ratio,shear test on 5 H-steel concrete composite beams with small span ratio (from 0.7 to 1.1) are reported,including test design,test scheme,test method,failure characteristics and test results. Influences of shear span ratio,web of H steel and concrete on shear carrying capacity of this kind of beam are investigated. The main components comprising shear bearing capacity are analyzed. The results show that with the shear span ratio increasing,the contribution of web of H steel and concrete on shear carrying capacity decrease. Based on test data,the calculation formula of shear carrying capacity for this beam is established by curve fitting. 展开更多
关键词 concrete H-steel composite beam shear span ratio shear carrying capacity
下载PDF
Experimental study and analysis on fatigue stiffness of RC beams strengthened with CFRP and steel plate 被引量:13
2
作者 卢亦焱 胡玲 +1 位作者 李杉 王康昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期701-707,共7页
The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati... The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results. 展开更多
关键词 carbon fiber reinforced polymer steel plate composite strengthening technique reinforced concrete beams fatigue stiffness
下载PDF
Simulation of Fatigue Stiffness Degradation in Prestressed Concrete Beams under Cyclic Loading
3
作者 Junqing Lei Shanshan Cao +1 位作者 Guoshan Xu Yun Xiao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第1期67-74,共8页
In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete bea... In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions. 展开更多
关键词 prestressed concrete beam fatigue stiffness degradation simulation damaged concrete elastic modulus steel effective residual area deflection prediction
下载PDF
Fatigue tests of composite beam by steel fiber reinforced self-stressing concrete in the hogging bending
4
作者 胡铁明 黄承逵 +1 位作者 梁振宇 陈小锋 《Journal of Shanghai University(English Edition)》 CAS 2010年第6期430-436,共7页
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ... Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone. 展开更多
关键词 steel fiber reinforced self-stressing concrete (SFRSC) composite beam hogging bending fatigue
下载PDF
Experimental study on ultimate flexural capacity of steel encased concrete composite beams 被引量:8
5
作者 肖辉 李爱群 杜德润 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期191-196,共6页
Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c... Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data. 展开更多
关键词 steel encased concrete composite beam ultimate flexural capacity finiteelement analysis
下载PDF
Experimental research on mechanical properties of prestressed truss concrete composite beam encased with circular steel tube 被引量:3
6
作者 张博一 郑文忠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第3期338-345,共8页
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t... Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well. 展开更多
关键词 truss concrete composite beam encased with circular steel tube bearing capacity of normal section STIFFNESS crack width unbonded prestressed tendon
下载PDF
Mechanical performance of shear studs and application in steel-concrete composite beams 被引量:1
7
作者 朱志辉 张磊 +3 位作者 柏宇 丁发兴 刘劲 周政 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2676-2687,共12页
This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element(FE) mo... This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element(FE) model and analyze the behavior of push-out specimens. The modeling results are in good agreement with the experimental results. Based on parametrical analysis using the validated FE approaches, the effects of important design parameters, such as the diameter, number, length to diameter ratio, and yield strength of studs, concrete strength and steel transverse reinforcement ratio, on the load-slip relationship at the interface of composite beams are discussed. In addition, a simplified approach to model studs is developed using virtual springs with an equivalent stiffness. This approach is demonstrated to be able to predict the load-displacement response and ultimate bearing capacity of steel-concrete composite beams. The predicted results show satisfactory agreement with experimental results from the literature. 展开更多
关键词 shear studs push-out test load-slip relationship ultimate bearing capacity steel-concrete composite beams
下载PDF
Fatigue properties of special kind of reinforced concrete composite beams
8
作者 胡铁明 黄承逵 陈小锋 《Journal of Central South University》 SCIE EI CAS 2010年第1期142-149,共8页
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa... The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam. 展开更多
关键词 steel fiber reinforced self-stressing concrete composite beam constructional bar bonding interface fatigue
下载PDF
The Design and Analysis of Long-Span and Low-Depth Prestressed Composite Steel-Concrete Beam Bridge
9
作者 张俊平 黄海云 黄道沸 《Journal of Southwest Jiaotong University(English Edition)》 2002年第1期57-67,共11页
The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significa... The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors. 展开更多
关键词 prestressed composite steel concrete beam construction step jacking technique shear connector
下载PDF
Static behavior of semi-rigid thin-walled steel-concrete composite beam-to-column joints with bolted partial-depth flush end plate:experimental study
10
作者 郜京峰 张耀春 +2 位作者 王海明 姚淇誉 金路 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期91-102,共12页
A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic ... A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints. 展开更多
关键词 SEMI-RIGID thin-walled steel-concrete composite structures beam-to-column joints static behavior experimental study
下载PDF
Bending Stiffness of Truss-Reinforced Steel-Concrete Composite Beams
11
作者 Francesco Trentadue Erika Mastromarino +3 位作者 Giuseppe Quaranta Floriana Petrone Giorgio Monti Giuseppe Carlo Marano 《Open Journal of Civil Engineering》 2014年第3期285-300,共16页
This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system work... This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss;once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed. 展开更多
关键词 Bending Stiffness steel-concrete composite beams PRECAST Floor Systems
下载PDF
Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls 被引量:5
12
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Qiao Qiyun Yu Chuanpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期125-139,共15页
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p... In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique. 展开更多
关键词 steel reinforced concrete steel plate deep beam multi energy dissipation composite shear wall seismic behavior
下载PDF
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams 被引量:1
13
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Zhang Jianwei Xu Fangfang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期609-624,共16页
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat... A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures. 展开更多
关键词 concrete filled steel tube (CFST) column steel plate (SP) deep beam composite shear wall seismic test calculation and analysis
下载PDF
Experimental study on seismic behaviors of steel-concrete composite frames 被引量:2
14
作者 戚菁菁 蒋丽忠 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4396-4413,共18页
Steel-concrete composite frames are seeing increased use in earthquake region because of their excellent structural characteristics, including high strength, stiffness, and good ductility. However, there exist gaps in... Steel-concrete composite frames are seeing increased use in earthquake region because of their excellent structural characteristics, including high strength, stiffness, and good ductility. However, there exist gaps in the knowledge of seismic behavior and the design provisions for these structures. In order to better understand the seismic behaviors of composite frame systems, eight steel-concrete composite frames were designed. These composite frames were composed of steel-concrete composite beams and concrete filled steel tube columns. The axial compression ratio of column, slenderness ratio and linear stiffness ratio of beam to column were selected as main design parameters. The low reversed cyclic loading tests of composite frame system were carried out. Based on test results, the seismic behaviors of composite frames such as failure mode, hysteresis curve, strength degradation, rigidity degradation, ductility and energy dissipation were studied. Known from the test phenomenon, the main cause of damage is the out-of-plane deformation of steel beam and the yielding destruction of column heel. The hysteretic loops of composite frame appear a spindle shape and no obvious pinch phenomenon. The results demonstrate that this type of composite frame has favorable seismic behaviors. Furthermore, the effects of design parameters on seismic behaviors were also discussed. The results of the experiment show that the different design parameter has different influence rule on seismic behaviors of composite frame. 展开更多
关键词 composite FRAME steel-concrete composite beam conc
下载PDF
Identification of Connection Flexibility Effects Based on Load Testing of a Steel-Concrete Bridge
15
作者 Czeslaw Machelski Robert Toczkiewicz 《Journal of Civil Engineering and Architecture》 2012年第11期1504-1513,共10页
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe... In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper. 展开更多
关键词 Abstract: In the case of composite girders an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs used commonly in bridge structures does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position which can be used for verification of steel-concrete interaction in real bridge structures rather composite bridge partial interaction
下载PDF
Research on an innovative structure of an open-ribbed steel-ultra-high performance concrete composite bridge deck
16
作者 Xudong SHAO Xuan SUN +2 位作者 Deqiang ZOU Junhui CAO Chuanqi YANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第5期716-730,共15页
To completely solve the problem of fatigue cracking issue of orthotropic steel bridge decks(OSDs),the authors proposed a steel–ultra-high performance concrete(UHPC)lightweight composite deck(LWCD)with closed ribs in ... To completely solve the problem of fatigue cracking issue of orthotropic steel bridge decks(OSDs),the authors proposed a steel–ultra-high performance concrete(UHPC)lightweight composite deck(LWCD)with closed ribs in 2010.Based on the successful application of that LWCD,an adaptation incorporating an innovative composite deck structure,i.e.,the hot-rolled section steel–UHPC composite deck with open ribs(SSD)is proposed in this paper,aiming to simplify the fabrication process as well as to reduce the cost of LWCD.Based on a long-span cable-stayed bridge,a design scheme is proposed and is compared with the conventional OSD scheme.Further,a finite element(FE)calculation is conducted to reflect both the global and local behavior of the SSD scheme,and it is found that the peaked stresses in the SSD components are less than the corresponding allowable values.A static test is performed for an SSD strip specimen to understand the anti-cracking behavior of the UHPC layer under negative bending moments.The static test results indicate that the UHPC layer exhibited a satisfactory tensile toughness,the UHPC tensile strength obtained from the test is 1.8 times the calculated stress by the FE model of the real bridge.In addition,the fatigue stresses of typical fatigue-prone details in the SSD are calculated and evaluated,and the influences of key design parameters on the fatigue performance of the SSD are analyzed.According to the fatigue results,the peaked stress ranges for all of the 10 fatigue-prone details are within the corresponding constant amplitude fatigue limits.Then a fatigue test is carried out for another SSD strip specimen to explore the fatigue behavior of the fillet weld between the longitudinal and transverse ribs.The specimen failed at the fillet weld after equivalent 47.5 million cycles of loading under the design fatigue stress range,indicating that the fatigue performance of the SSD could meet the fatigue design requirement.Theoretical calculations and experiments provide a basis for the promotion and application of this structure in bridge engineering. 展开更多
关键词 steel-ultra-high performance concrete composite deck open rib strip model test static and fatigue performance orthotropic steel deck
原文传递
大跨度钢混组合梁斜拉桥钢锚梁制造关键技术
17
作者 曹军文 《山西建筑》 2025年第2期183-186,共4页
结合公司近几年生产制造的大跨度钢混组合梁斜拉桥钢锚梁结构,以禹门口黄河大桥为例,介绍了钢锚梁结构组成,分析了大跨度钢混组合梁斜拉桥钢锚梁制造重难点,针对该项目钢锚梁结构复杂、熔透焊缝多的特点,论述了大跨度钢混组合梁斜拉桥... 结合公司近几年生产制造的大跨度钢混组合梁斜拉桥钢锚梁结构,以禹门口黄河大桥为例,介绍了钢锚梁结构组成,分析了大跨度钢混组合梁斜拉桥钢锚梁制造重难点,针对该项目钢锚梁结构复杂、熔透焊缝多的特点,论述了大跨度钢混组合梁斜拉桥钢锚梁的制造关键技术,解决了加工制造过程中焊接变形及尺寸精度控制等诸多技术难题。 展开更多
关键词 钢混组合梁 斜拉桥 钢锚梁 制造关键技术
下载PDF
Test analysis on prestressed concrete composite beams with steel boxes subjected to torsion and combined flexure and torsion 被引量:2
18
作者 HU ShaoWei CHEN Liang 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第12期3302-3310,共9页
While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or in... While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or international literature on the an- ti-torque and composite torque properties of this type of beam. With the aim of understanding the torque properties of these beams, this paper presents results of ten comprehensive tests; three of these were based on stirrup spacings and prestressing levels as the main parameters, while the other seven were based on torsional rates. The torsion tests were conducted on the re- sults which established several key parameters, including curves of constant torsion, strain curves of steel torsion, strain distri- bution of steel beams and concrete, curves of bending-moment and mid-span deflection, as well as cross strain distribution.The prestressing impact-factor method was adopted to deduce semiempirical equations for cracking torque in such composite beams. Furthermore, this involves the use of the equation of ultimate torque based on tress-model-theory of the distortion an- gle, the calculated results show good agreement with the measured values. In summary, this paper offers theoretical analysis for future applications of HSC composite beams with PS boxes, and provides both validation of the methods employed and a reference point for on-going research on composite beams and related anti-torque studies. 展开更多
关键词 high-strength concrete composite beams prestressed steel boxes torsion property cracking torque ultimate torque combined torsion torsion-bending correlation equation
原文传递
工艺孔对大截面部分包覆钢-混凝土组合梁受弯性能影响的试验研究 被引量:1
19
作者 贾水钟 刘宏欣 +3 位作者 李亚明 孙求知 张朕磊 钱桦 《建筑结构》 北大核心 2024年第4期9-17,共9页
为了研究工艺孔对大截面部分包覆钢-混凝土组合梁(大截面PEC梁)受弯性能的影响,对5根不同构造的大截面PEC梁进行了静力试验,研究了两点加载下主次梁腹板开洞方式对大截面PEC梁试件受弯性能、延性、破坏模式等的影响规律。结果表明:静力... 为了研究工艺孔对大截面部分包覆钢-混凝土组合梁(大截面PEC梁)受弯性能的影响,对5根不同构造的大截面PEC梁进行了静力试验,研究了两点加载下主次梁腹板开洞方式对大截面PEC梁试件受弯性能、延性、破坏模式等的影响规律。结果表明:静力荷载作用下,各个试件均表现出良好的延性,腹部开孔对试件承载力和截面刚度有一定的削弱作用。型钢主钢件的应变与混凝土的应变沿截面高度方向均大致呈线性变化,符合平截面假定。按《部分包覆钢-混凝土组合结构技术规程》(T/CECS 719—2020)计算得到的开工艺孔的大截面PEC梁抗弯承载力与试验值误差较小,受尺寸效应影响不大,所采用计算公式安全可靠。 展开更多
关键词 大截面部分包覆钢-混凝土组合梁 工艺孔 破坏模式 受弯承载力 延性
下载PDF
局部半包裹部分包覆钢-混凝土组合梁受弯性能试验研究 被引量:1
20
作者 李亚明 刘宏欣 +3 位作者 贾水钟 杨宇焜 李杰 徐瑜 《建筑结构》 北大核心 2024年第4期1-8,共8页
针对部分包覆钢-混凝土组合梁柱节点区域后浇筑混凝土不易密实的问题,研究了受拉侧混凝土对局部半包裹部分包覆钢-混凝土组合梁(局部半包裹PEC梁)受弯性能的影响,进行了2根不同构造的局部半包裹PEC梁的四点弯曲试验,模拟局部半包裹PEC... 针对部分包覆钢-混凝土组合梁柱节点区域后浇筑混凝土不易密实的问题,研究了受拉侧混凝土对局部半包裹部分包覆钢-混凝土组合梁(局部半包裹PEC梁)受弯性能的影响,进行了2根不同构造的局部半包裹PEC梁的四点弯曲试验,模拟局部半包裹PEC梁负弯矩区受力状态,对其受弯性能、延性、破坏形式等展开分析。结果表明:局部半包裹PEC梁表现出良好的延性,挠度达到l_(0)/50时截面抗弯承载力并未下降。型钢主钢件、混凝土的应变沿截面高度方向大致呈线性变化,可引用平截面假定计算受弯承载力及刚度。局部半包裹PEC梁受拉侧混凝土对其极限承载力与破坏模式影响不大,在计算局部半包裹PEC梁柱节点受力时可不考虑受拉侧混凝土作用,节点后浇筑区域可采用半包裹填充,以加快施工进度。此外,对局部半包裹PEC梁进行建模,进行梁受弯过程的有限元分析,对比模拟结果与试验结果,二者荷载-挠度曲线吻合较好,误差均在10%以内。 展开更多
关键词 局部半包裹部分包覆钢-混凝土组合梁 破坏模式 受弯承载力 延性
下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部