期刊文献+
共找到3,046篇文章
< 1 2 153 >
每页显示 20 50 100
Effect of Shrinkage Reducing Agent and Steel Fiber on the Fluidity and Cracking Performance of Ultra-High Performance Concrete
1
作者 Yong Wan Li Li +4 位作者 Jiaxin Zou Hucheng Xiao Mengdi Zhu Ying Su Jin Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1941-1956,共16页
Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ... Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively. 展开更多
关键词 Ultra-high performance concrete chemical shrinkage reducing agent steel fiber shrinkage cracking repair and reinforcement
下载PDF
Structural Behavior of Continuous Prestressed Steel Fiber Reinforced High Strength Concrete Beam 被引量:2
2
作者 刘海波 向天宇 赵人达 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期37-45,共9页
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre... The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design. 展开更多
关键词 High strength concrete steel fiber reinforced concrete Prestressed concrete Continuous beam
下载PDF
Flexural Behaviour of High-Strength Steel Fiber-Reinforced Concrete Beams
3
作者 钱春香 IndubhushanPatnaikuni 《Journal of Southeast University(English Edition)》 EI CAS 1996年第2期137-144,共8页
This paper presents the research results of twelve high strength concrete beams reinforced with steel fibers and bars. Fiber type I and II reduce the deflection by more than 25% and increase the ultimate load by abou... This paper presents the research results of twelve high strength concrete beams reinforced with steel fibers and bars. Fiber type I and II reduce the deflection by more than 25% and increase the ultimate load by about 10% compared to high strength concr 展开更多
关键词 high strength concrete beam steel fiber deflection crack DUCTILITY
下载PDF
Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Deep Beams
4
作者 XU Lihua CHI Yin +1 位作者 SU Jie XIA Dongtao 《Wuhan University Journal of Natural Sciences》 CAS 2008年第2期201-206,共6页
By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In... By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably. 展开更多
关键词 steel fiber reinforced concrete deep beam nonlinear finite element bond stress-slip relationship
下载PDF
Fatigue tests of composite beam by steel fiber reinforced self-stressing concrete in the hogging bending
5
作者 胡铁明 黄承逵 +1 位作者 梁振宇 陈小锋 《Journal of Shanghai University(English Edition)》 CAS 2010年第6期430-436,共7页
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ... Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone. 展开更多
关键词 steel fiber reinforced self-stressing concrete (SFRSC) composite beam hogging bending FATIGUE
下载PDF
The Influence of Steel and Basalt Fibers on the Shear and Flexural Capacity of Reinforced Concrete Beams
6
作者 Julita Krassowska Andrzej Lapko 《Journal of Civil Engineering and Architecture》 2013年第7期789-795,共7页
关键词 钢筋混凝土梁 玄武岩纤维 抗弯承载力 钢纤维混凝土 测试过程 纤维增强混凝土 抗剪 模型梁
下载PDF
Effect of Steel Fiber on Concrete’s Compressive Strength
7
作者 Mohammed Saed Yusuf Abdirisak Bashir Isak +4 位作者 Guled Ali Mohamud Abdullahi Hashi Warsame Yahye Ibrahim Osman Abdullahi Husein Ibrahim Liban Abdi Aziz Elmi 《Open Journal of Civil Engineering》 CAS 2023年第1期192-197,共6页
The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers... The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers best result. Manually, cement, fine aggregates, coarse aggregates, steel fibers, and water were mixed together properly. A slump test was carried on the mixed concrete. After determining the workability, the mixed concrete was poured into cubes dimension 150 mm × 150 mm × 150 mm and left for 24 hours. After 24 hours, the samples were removed from the mold and placed in a water tank to cure for 7 to 28 days. The cube was tested for compressive and flexural strength in a universal testing machine after the samples had cured for the required 7 - 28 days. This study focuses on how to obtain high strength concrete using with steel fiber in the Conventional mix ratio to enhance concrete strength. Concrete reinforcement using steel fibers alters the characteristics of the concrete, allowing it to withstand fracture and hence improve its mechanical qualities. This study reports on an experimental study that reveals the effect of steel fiber on concrete compressive strength and the optimal steel fiber ratio that produces the best results. Steel fiber reinforcing improved the compressive strength of concrete. The average compressive strength of normal M25 concrete with 0% steel fibers and curing ages of 7 and 28 days was determined to be 22.97 N/mm<sup>2</sup> and 25.78 N/mm<sup>2</sup>, respectively. The steel fibers are then added in various concentrations, such as 1%, 2%, and 3%, with aspect ratios of 70. The compressive strength of concrete with 1%, 2%, and 3% steel fiber with an aspect ratio of 70 was examined at 7 days and found to be 23.96, 24.80, and 26.14 N/mm<sup>2</sup> correspondingly. 展开更多
关键词 steel fiber reinforced concrete fiber Reinforcement Compression Strength of concrete Improvement Compression Strength
下载PDF
Mechanical Properties of Layered Steel Fiber and Hybrid Fiber Reinforced Concrete 被引量:5
8
作者 卢哲安 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期733-736,共4页
To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as com... To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C. 展开更多
关键词 layered steel fiber reinforced concrete mechanical properties layer hybrid fiber reinforced concrete
下载PDF
Effect of Acid Rain Erosion on Steel Fiber Reinforced Concrete 被引量:3
9
作者 王艳 牛荻涛 SONG Zhanping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期121-128,共8页
Acid rain can deteriorate the performance of reinforced concrete structure.Combined with the characteristics of acid rain in China,the properties of steel fiber reinforced concrete subjected to acid rain were studied.... Acid rain can deteriorate the performance of reinforced concrete structure.Combined with the characteristics of acid rain in China,the properties of steel fiber reinforced concrete subjected to acid rain were studied.The effects of steel fiber content and pH value of acid rain on the mass loss,erosion depth,neutralization depth,and splitting tensile strength of tested concrete were investigated.The mercury intrusion pore(MIP) test was used to analyze the influence of steel fiber on the acid rain resistance of concrete matrix.The results show that the corrosion of steel fiber reinforced concrete subjected to acid rain results from the combined effect of H^+ and SO4^2- in the acid rain,and steel fiber can improve the acid rain resistance of the tested concrete by improving the pore structure and enhancing the tie effect of the concrete matrix.The experiment further indicates that the optimum content of steel fiber is 1.5%compared to the various mixing proportion in this tests.The tested concrete mass loss and splitting tensile strength decrease followed by increasing as a function of corrosion time when the pH value of the simulation solution is 3 or 4,while they decrease continuously in the simulation solution at pH 2.Thanks to the tie effect of steel fiber,the spalling of concrete matrix is significantly improved,and the erosion depth and neutralization depth are less than those of conventional concrete. 展开更多
关键词 steel fiber reinforced concrete acid rain neutralization depth erosion depth
下载PDF
Experimental and Numerical Analysis of High-Strength Concrete Beams Including Steel Fibers and Large-Particle Recycled Coarse Aggregates 被引量:3
10
作者 Chunyang Liu Yangyang Wu +1 位作者 Yingqi Gao Zhenyun Tang 《Fluid Dynamics & Materials Processing》 EI 2021年第5期947-958,共12页
In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.... In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation. 展开更多
关键词 High-strength recycled concrete beam steel fiber large-particle recycled aggregates pre-damage reinforcement numerical simulation carrying capacity calculation
下载PDF
Charactersitics of Stress-strain Curve of High Strength Steel Fiber Reinforced Concrete under Uniaxial Tension 被引量:2
11
作者 杨萌 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期132-137,共6页
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo... A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction. 展开更多
关键词 steel fiber reinforced concrete high strength uniaxial tension soften characteristics stress-strain curve
下载PDF
Mesoscopic Modeling Approach and Application for Steel Fiber Reinforced Concrete under Dynamic Loading:A Review 被引量:2
12
作者 Jinhua Zhang Zhangyu Wu +2 位作者 Hongfa Yu Haiyan Ma Bo Da 《Engineering》 SCIE EI CAS 2022年第9期220-238,共19页
Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers e... Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers embedded in a concrete matrix usually play a strong bridging effect to enhance the bonding force between fiber and the matrix,and directly contribute to the improvement of the post-cracking behavior and residual strength of SFRC.To gain a better understanding of the action behavior of steel fibers in matrix and further capture the failure mechanism of SFRC under dynamic loads,the mesoscopic modeling approach that assumes SFRC to be composed of different mesoscale phases(i.e.,steel fibers,coarse aggregates,mortar matrix,and interfacial transition zone(ITZ))has been widely employed to simulate the dynamic responses of SFRC material and structural members.This paper presents a comprehensive review of the state-of-the-art mesoscopic models and simulations for SFRC under dynamic loading.Generation approaches for the SFRC mesoscale model in the simulation works,including steel fiber,coarse aggregate,and the ITZ between them,are reviewed and compared systematically.The material models for different phases and the interaction relationship between fiber and concrete matrix are summarized comprehensively.Additionally,some example applications for SFRC under dynamic loads(i.e.,compression,tension,and contact blast)simulated using the general mesoscale models are given.Finally,some critical analysis on the current shortcomings of the mesoscale modeling of SFRC is highlighted,which is of great significance for the future investigation and development of SFRC. 展开更多
关键词 steel fiber reinforced concrete Mesoscale modeling Dynamic loading Materials model Interfacial characteristic
下载PDF
Strain coordination of quasi-plane-hypothesis for reinforced concrete beam strengthened by epoxy-bonded glass fiber reinforced plastic plate 被引量:4
13
作者 曾宪桃 丁亚红 王兴国 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第4期391-394,共4页
The testing of thirteen reinforced concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly we... The testing of thirteen reinforced concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly well in coordination to each other. But there is relative slipping between RC beam and GFRP plate. And the strain of GFRP and steel rebar of RC beam satisfies the quasi-plane-hypothesis, that is, the strain of longitudinal fiber that parallels to the neutral axis of plated beam within the scope of effective height (h0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of GFRP and steel rebar satisfies the equation: ε GFRP =Kε steel . 展开更多
关键词 玻璃钢 加固 混凝土梁 建筑结构
下载PDF
Complete splitting process of steel fiber reinforced concrete at intermediate strain rate 被引量:1
14
作者 罗章 李夕兵 赵伏军 《Journal of Central South University of Technology》 EI 2008年第4期569-573,共5页
The complete splitting process of steel fiber reinforced concrete(SFRC)at intermediate strain rate was studied by experiment.The basic information of a self-developed SFRC dynamic test system matching with Instron 134... The complete splitting process of steel fiber reinforced concrete(SFRC)at intermediate strain rate was studied by experiment.The basic information of a self-developed SFRC dynamic test system matching with Instron 1342 materials testing machine was given,and the experiment principle and the loading mode of cubic split specimen were introduced.During the experiment,30 cubes of 150 mm×150 mm×150 mm and 36 cubes of 100 mm×100 mm×100 mm,designed and prepared according to C20 class SFRC with different volume fractions of steel fiber(0,1%,2%,3%,4%)were tested and analyzed.At the same time,the size effect of SFRC at intermediate strain rate was investigated.The experimental study indicates that SFRC size effect is not influenced by the loading speed or strain rate.When the steel fiber content increases from 0 to 4%,the splitting strength of SFRC increases from 100%to 261%,i.e.increasing by 161%compared with that of the common concrete.The loading rate increases from 1.33 kN/s to 80.00 kN/s,and the splitting tensile strength increases by 43.55%. 展开更多
关键词 钢筋混凝土 中间体 分解实验 钢纤维
下载PDF
Seismic Behaviour of Beam-Column Joints of Precast and Partial Steel Reinforced Concrete 被引量:1
15
作者 Wanpeng Cheng Licheng Wang +1 位作者 Yupu Song Jun Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期108-117,共10页
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate... A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints. 展开更多
关键词 precast and partial steel reinforced concrete(PPSRC) beam-column joints low cyclic test hysteretic curve degradations of strength and stiffness DUCTILITY
下载PDF
Properties of High Strength Steel Fiber Reinforced Concrete under Compression
16
作者 钱春香 IndubhushanPatnaikuni 《Journal of Southeast University(English Edition)》 EI CAS 1996年第2期130-136,共7页
This paper mainly discusses the properties of high strength steel fiber reinforced concrete under compression. Steel fibers with volume content of 1% do not display significant effect on the strain at peak stress and... This paper mainly discusses the properties of high strength steel fiber reinforced concrete under compression. Steel fibers with volume content of 1% do not display significant effect on the strain at peak stress and the area of the ascending portion of 展开更多
关键词 steel fiber reinforced concrete high STRENGTH stress strain PROPERTIES
下载PDF
Investigating Some Parameters Affecting Flexural Behavior of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer Laminate
17
作者 Azad A.Mohammed 《Journal of World Architecture》 2018年第5期1-6,共6页
In this paper,the influence of some important parameters affecting the flexural behavior of reinforced concrete beams strengthened with one layer of carbon fiber reinforced polymer(CFRP)laminate has been studied.For t... In this paper,the influence of some important parameters affecting the flexural behavior of reinforced concrete beams strengthened with one layer of carbon fiber reinforced polymer(CFRP)laminate has been studied.For this purpose,six reinforced concrete beams were cast and tested in the laboratory.Based on the obtained data,when CFRP laminate is applied to the tension face,too close to the steel rebar,the flexural strength of the strengthened beam is reduced.In general,the performance of the beam strengthened with one wide CFRP strip is better than that strengthened with two equivalent narrow strips.Ultimate load capacity of each strengthened beam was calculated based on the method given by the ACI 440.2R and compared with the test one.It is concluded that,to avoid the steel rebar-CFRP laminate interaction effect,the CFRP laminate depth-to-the effective depth ratio(df/d)should not be smaller than about 1.17. 展开更多
关键词 carbon fiber reinforced polymer concrete beam flexure strengthening
下载PDF
Shear strengthening of pre-damaged reinforced concrete beams with carbon fiber reinforced polymer sheet strips
18
作者 Feras ALZOUBI 《Journal of Chongqing University》 CAS 2007年第4期305-310,共6页
This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (C... This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with side- bonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in ACI-440 and fib European code were compared with the experimental results. 展开更多
关键词 钢筋混凝土 建筑物 建筑结构 计算方法
下载PDF
Performance of Steel-fiber Reinforced Concrete Exposed to High Temperature
19
作者 杨少伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第S1期156-160,共5页
Effects of high temperature on the compressive and splitting strength of the steel-fiber reinforced concrete (SFRC) with different content of steel-fiber were investigated and its mechanism was simply analyzed.Results... Effects of high temperature on the compressive and splitting strength of the steel-fiber reinforced concrete (SFRC) with different content of steel-fiber were investigated and its mechanism was simply analyzed.Results indicate that the compressive and splitting strength of SFRC decrease slowly within 400 ℃ and they decay a little faster when over 400 ℃.The residual compressive and splitting strength rate of SFRC (2% fiber) increase about 27.6% and 9.3% of that of the control concrete without steel-fiber,respectively.The finite element software ANSYS was adopted to analyze the temperature field and stress field of the steel-fiber reinforced concrete at 400 ℃.The simulation results can further explain the effects of fiber content on the thermal field and stress field in SFRC and forecast the crack tendency of SFRC during heating process. 展开更多
关键词 steel-fiber reinforced concrete thermal stress finite element ANSYS
下载PDF
Flexural rigidity evolvement laws of reinforced concrete beams strengthened with carbon fiber laminates
20
作者 牛鹏志 《Journal of Chongqing University》 CAS 2007年第1期67-72,共6页
Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper presents ... Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper presents the research on flexural rigidity evolvement laws by testing 14 simple-supported RC beams strengthened with carbon fiber laminates (CFL) under cyclic load, and 2 under monotone load as a reference. The cyclic load tests revealed the peak load applied onto the surface of a supported RC beam strengthened with CFL is linear to the logarithm of its fatigue life, and the flexural rigidity evolvement undergoes three distinct phases: a rapid decrease from the start to about 5% of the fatigue life; an even development from 5% to about 99% of the fatigue life; and a succedent rapid decrease to failure. When the ratio of fatigue cycles to the fatigue life is within 0.05 to 0.99, the flexural rigidity varies linearly with the ratio. The peak load does not affect the flexural rigidity evolvement if it is not high enough to make the main reinforcements yield. The dependences of the flexural rigidity of specimens formed in the same group upon their fatigue cycles normalized by fatigue life are almost coincident. This implies the flexural rigidity may be a material parameter independent of the stress level. These relationships of flexural rigidity to fatigue cycles, and fatigue life may be able to provide some hints for fatigue design and fatigue life evaluation of RC member strengthened with CFL; nevertheless the findings still need verifying by more experiments. 展开更多
关键词 碳纤维层压增强材料 加筋混凝土梁 抗挠刚度 疲劳
下载PDF
上一页 1 2 153 下一页 到第
使用帮助 返回顶部