In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element m...In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.展开更多
The application of steel strut force servo systems in deep excavation engineering is not widespread,and there is a notable scarcity of in-situ measured datasets.This presents a significant research gap in the field.Ad...The application of steel strut force servo systems in deep excavation engineering is not widespread,and there is a notable scarcity of in-situ measured datasets.This presents a significant research gap in the field.Addressing this,our study introduces a valuable dataset and application scenarios,serving as a reference point for future research.The main objective of this study is to use machine learning(ML)methods for accurately predicting strut forces in steel supporting structures,a crucial aspect for the safety and stability of deep excavation projects.We employed five different ML methods:radial basis function neural network(RBFNN),back propagation neural network(BPNN),K-Nearest Neighbor(KNN),support vector machine(SVM),and random forest(RF),utilizing a dataset of 2208 measured points.These points included one output parameter(strut forces)and seven input parameters(vertical position of strut,plane position of strut,time,temperature,unit weight,cohesion,and internal frictional angle).The effectiveness of these methods was assessed using root mean square error(RMSE),correlation coefficient(R),and mean absolute error(MAE).Our findings indicate that the BPNN method outperforms others,with RMSE,R,and MAE values of 72.1 kN,0.9931,and 57.4 kN,respectively,on the testing dataset.This study underscores the potential of ML methods in precisely predicting strut forces in deep excavation engineering,contributing to enhanced safety measures and project planning.展开更多
基金Project(50678052) supported by the National Natural Science Foundation of China
文摘In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.
基金supported by the National Natural Science Foundation of China(Grant No.51778575).
文摘The application of steel strut force servo systems in deep excavation engineering is not widespread,and there is a notable scarcity of in-situ measured datasets.This presents a significant research gap in the field.Addressing this,our study introduces a valuable dataset and application scenarios,serving as a reference point for future research.The main objective of this study is to use machine learning(ML)methods for accurately predicting strut forces in steel supporting structures,a crucial aspect for the safety and stability of deep excavation projects.We employed five different ML methods:radial basis function neural network(RBFNN),back propagation neural network(BPNN),K-Nearest Neighbor(KNN),support vector machine(SVM),and random forest(RF),utilizing a dataset of 2208 measured points.These points included one output parameter(strut forces)and seven input parameters(vertical position of strut,plane position of strut,time,temperature,unit weight,cohesion,and internal frictional angle).The effectiveness of these methods was assessed using root mean square error(RMSE),correlation coefficient(R),and mean absolute error(MAE).Our findings indicate that the BPNN method outperforms others,with RMSE,R,and MAE values of 72.1 kN,0.9931,and 57.4 kN,respectively,on the testing dataset.This study underscores the potential of ML methods in precisely predicting strut forces in deep excavation engineering,contributing to enhanced safety measures and project planning.