期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis
1
作者 Yan Wang Siwen Li Na Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3467-3493,共27页
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu... A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking. 展开更多
关键词 Corrugated steel web girder bridges simply supported beam bridges vehicle-bridge coupled vibration BRAKING impact factor
下载PDF
Review and discussion on fire behavior of bridge girders 被引量:13
2
作者 Gang Zhang Xiaocui Zhao +3 位作者 Zelei Lu Chaojie Song Xuyang Li Chenhao Tang 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2022年第3期422-446,共25页
This paper presents an overview on fire behavior of bridge girders mainly including prestressed concrete(PC) bridge girders and steel bridge girders. The typical fire accidents occurred on bridges are illustrated and,... This paper presents an overview on fire behavior of bridge girders mainly including prestressed concrete(PC) bridge girders and steel bridge girders. The typical fire accidents occurred on bridges are illustrated and, the seriousness of posing threats to bridge structures resulted from increasing traffic fires, specially intense hydrocarbon fires generated from petrol-chemicals, is highlighted. The current researches, embracing high-temperature properties of constituent materials, prestress state, measurement in fire tests, numerical methods, structural fire resistance, and so forth, taken on coping with problems existing in fire behavior and structural fire behavior in bridge girders are reviewed and discussed. Further, strategies for enhancing fire resistance of bridge girders followed with failure criterion and mode in types of bridge structures are provided. Future research area along with emerging trends in structural fire behavior of bridge girders is also recommended for mitigating fire hazards occurred on bridge girders. Herein, it can be attained a conclusion from review and discussion that prestressed concrete bridge girders with thin webs, specially T-shaped bridge girder, are prone to unstable under fire exposure conditions. High-strength concrete utilized in prestressed concrete bridge girders is vulnerable to spalling at elevated temperature. Steel-truss bridge girder present a more significant fragility to fire exposure compared than other steel bridge girders. 展开更多
关键词 bridge engineering Fire behavior Prestressed concrete bridge girder steel bridge girder Fire resistance Fire hazard
原文传递
Refined analysis and construction parameter calculation for full-span erection of the continuous steel box girder bridge with long cantilevers 被引量:4
3
作者 Jin-feng WANG Tian-mei WU +2 位作者 Jiang-tao ZHANG Hua-wei XIANG Rong-qiao XU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第4期268-279,共12页
To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements ... To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements are adopted in this paper. The entire construction process is simulated by the A-FEM with the mesh-separation-based approximation technique, while the degenerated plate elements are constructed based on 3D isoparametric elements, making it suitable for analysis of a thin-walled structure. This method significantly improves computational efficiency by avoiding numerous degrees of freedom(DoFs) when analyzing complex structures. With characteristics of the full-span erection technology, the end-face angle of adjacent girder segments, the preset distance of girder segments from the design position, and the temperature difference are selected as control parameters, and they are calculated through the structural response of each construction stage. Engineering practice shows that the calculation accuracy of A-FEM is verified by field-measured results. It can be applied rapidly and effectively to evaluate the matching state of girder segments and the stress state of bearings as well as the thermal effect during full-span erection. 展开更多
关键词 Continuous steel box girder bridges Full-span erection Augmented finite element method(A-FEM) Construction control Construction parameter calculation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部