To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens...To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.展开更多
Freeze-thaw durabilities of three types of concretesnormal portland cement concrete (OPC), high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC) were systemically investigated u...Freeze-thaw durabilities of three types of concretesnormal portland cement concrete (OPC), high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC) were systemically investigated under the attacks of chemical solution, and combination of external flexural stress and chemical solution. Four kinds of bitterns from salt lakes in Sinkiang, Qinghai, Inner Mongolia and Tibet provinces of China were used as chemical attack solutions. The relative dynamic modulus (RDM) was used as an index for evaluating the damage degree during the course of chemical attack and stress corrosion. The experimental results show that the freeze-thaw durability of concrete is visibly reduced in the present of the flexural stress, i e, stress accelerates the damage process. In order to quantify the stress accelerated effect, a stress accelerating coefficient was proposed. The stress accelerating coefficient is closely related with the types of bitterns and the numbers of freeze-thaw cycles is. The more numbers of freeze-thaw cycles is, the greater the stress accelerating coefficient for various concretes will be. In addition, there also exists a critical ratio of external stress to the maximum flexural stress. If the stress ratio exceeds the critical one, the freeze-thaw durability of various concretes will be greatly decreased compared to the responding concretes without applied stress. The critical stress ratio of OPC, HSC and SFRHSC is 0.30, 0.40 and 0.40, respectively, indicating that HSC and SFRHSC have advantages over OPC and are suitable to use in the bittern erosion regions.展开更多
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
基金Supported by National Natural Science Foundation of China (No. 50878037)
文摘To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.
基金Funded by the National Natural Science Foundation of China(No. 59938170and 50178044)the Natural Science Foundation of Jiangsu Province of China (No. BK2005216)
文摘Freeze-thaw durabilities of three types of concretesnormal portland cement concrete (OPC), high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC) were systemically investigated under the attacks of chemical solution, and combination of external flexural stress and chemical solution. Four kinds of bitterns from salt lakes in Sinkiang, Qinghai, Inner Mongolia and Tibet provinces of China were used as chemical attack solutions. The relative dynamic modulus (RDM) was used as an index for evaluating the damage degree during the course of chemical attack and stress corrosion. The experimental results show that the freeze-thaw durability of concrete is visibly reduced in the present of the flexural stress, i e, stress accelerates the damage process. In order to quantify the stress accelerated effect, a stress accelerating coefficient was proposed. The stress accelerating coefficient is closely related with the types of bitterns and the numbers of freeze-thaw cycles is. The more numbers of freeze-thaw cycles is, the greater the stress accelerating coefficient for various concretes will be. In addition, there also exists a critical ratio of external stress to the maximum flexural stress. If the stress ratio exceeds the critical one, the freeze-thaw durability of various concretes will be greatly decreased compared to the responding concretes without applied stress. The critical stress ratio of OPC, HSC and SFRHSC is 0.30, 0.40 and 0.40, respectively, indicating that HSC and SFRHSC have advantages over OPC and are suitable to use in the bittern erosion regions.